短時間フーリエ変換、MFCCを利用する
import numpy as np import librosa import librosa.display import os import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn import svm from scipy import fftpack # 音声データを読み込む speakers = {'kirishima' : 0, 'suzutsuki' : 1, 'belevskaya' : 2} # 特徴量を返す def get_feat(file_name): a, sr = librosa.load(file_name) y = np.abs(librosa.stft(a)) plt.figure(figsize=(10, 4)) librosa.display.specshow(librosa.amplitude_to_db(y, ref=np.max), y_axis='log', x_axis='time', sr=sr) plt.colorbar(format='%+2.0fdB') plt.tight_layout() return y # 特徴量と分類のラベル済みのラベルの組を返す def get_data(dir_name): data_X = [] data_y = [] for file_name in sorted(os.listdir(path=dir_name)): print("read: {}".format(file_name)) speaker = file_name[0:file_name.index('_')] data_X.append(get_feat(os.path.join(dir_name, file_name))) data_y.append((speakers[speaker], file_name)) return (np.array(data_X), np.array(data_y)) # data_X, data_y = get_data('voiceset') get_feat('sample/hi.wav') get_feat('sample/lo.wav')
speakers = {'kirishima' : 0, 'suzutsuki' : 1, 'belevskaya' : 2} # 特徴量を返す def get_feat(file_name): a, sr = librosa.load(file_name) y = np.abs(librosa.stft(a)) # plt.figure(figsize=(10, 4)) # librosa.display.specshow(librosa.amplitude_to_db(y, ref=np.max), y_axis='log', x_axis='time', sr=sr) # plt.colorbar(format='%+2.0fdB') # plt.tight_layout() return y # 特徴量と分類のラベル済みのラベルの組を返す def get_data(dir_name): data_X = [] data_y = [] for file_name in sorted(os.listdir(path=dir_name)): print("read: {}".format(file_name)) speaker = file_name[0:file_name.index('_')] data_X.append(get_feat(os.path.join(dir_name, file_name))) data_y.append((speakers[speaker], file_name)) return (data_X, data_y) data_X, data_y = get_data('voiceset') train_X, test_X, train_y, test_y = train_test_split(data_X, data_y, random_state=11813) print("{} -> {}, {}".format(len(data_X), len(train_X), len(test_X))) def predict(X): result = clf.predict(X.T) return np.argmax(np.bincount(result)) ok_count = 0 for X, y in zip(test_X, test_y): actual = predict(X) expected = y[0] file_name = y[1] ok_count += 1 if actual == expected else 0 result = 'o' if actual == expected else 'x' print("{} file: {}, actual: {}, expected: {}".format(result, file_name, actual, expected)) print("{}/{}".format(ok_count, len(test_X)))
MFCC
def get_feat(file_name): a, sr = librosa.load(file_name) y = librosa.feature.mfcc(y=a, sr=sr) # plt.figure(figsize=(10, 4)) # librosa.display.specshow(librosa.amplitude_to_db(y, ref=np.max), y_axis='log', x_axis='time', sr=sr) # plt.colorbar(format='%+2.0fdB') # plt.tight_layout() return y
o file: suzutsuki_b06.wav, actual: 1, expected: 1
o file: kirishima_04_su.wav, actual: 0, expected: 0
o file: kirishima_c01.wav, actual: 0, expected: 0
o file: belevskaya_b04.wav, actual: 2, expected: 2
o file: belevskaya_b14.wav, actual: 2, expected: 2
o file: kirishima_b04.wav, actual: 0, expected: 0
o file: suzutsuki_b08.wav, actual: 1, expected: 1
o file: belevskaya_b07.wav, actual: 2, expected: 2
o file: suzutsuki_b03.wav, actual: 1, expected: 1
o file: belevskaya_b10.wav, actual: 2, expected: 2
o file: kirishima_b01.wav, actual: 0, expected: 0
o file: belevskaya_07_su.wav, actual: 2, expected: 2
12/12
MFCC凄すぎんだろこれ