TTS(Text-to-Speech)は大きく分けると、Rule-based(ルールベース)TTS と Neural(ニューラル)TTS の2種類に分類される
全体像:TTS技術の進化段階
世代 技術名 代表方式 特徴
第1世代 Rule-based TTS 記号変換・音声ルール合成 機械的・不自然だが制御しやすい
第2世代 Statistical Parametric TTS HMMなど 統計的だが声がややロボット的
第3世代 Neural TTS(Deep Learning TTS) Tacotron, WaveNetなど 人間のように自然な音声
① Rule-based TTS(ルールベース音声合成)
人間が手作業で定義した「発音ルール」「音声単位(音素)」をもとに、
音を組み合わせて音声を作る仕組みです。
テキスト → 発音記号(ルールで変換) → 音声単位をつなげて波形生成
方式 説明
Formant synthesis(フォルマント合成) 声帯や口の共鳴特性を数式モデル化(例:Bell Labsの技術)
Concatenative synthesis(連結合成) 実際の録音音声(単語や音素)を切り貼りして繋ぐ方式(例:初期のナビ音声)
🎙 特徴
✅ メモリ・計算コストが低い
✅ 特定の発音やイントネーションを細かく制御できる
❌ 音のつなぎ目が不自然(滑らかさがない)
❌ 抑揚や感情表現が単調・ロボット的
② Neural TTS(ニューラル音声合成)
🧠 仕組み
深層学習モデル(ディープニューラルネットワーク)が
テキスト→音声波形 の変換を「学習」
主な代表モデル
モデル 内容
Tacotron / Tacotron2 テキスト→メルスペクトログラムをSeq2Seqで生成。自然なイントネーション。
FastSpeech / FastSpeech2 Tacotronを改良し、高速かつ安定。
WaveNet / HiFi-GAN / DiffWave 高品質なボコーダ(波形生成)。人間に近い音質。
🎙 特徴
✅ 自然な抑揚・滑らかさ・感情表現
✅ 大量データを使えば「人の声をそっくり再現」できる
✅ マルチスピーカー・多言語対応が容易
❌ 計算コストが高く、学習に大規模データが必要
❌ 「声のなりすまし」などの倫理リスクがある
🎯 Rule-based vs Neural TTS 比較表
比較項目 Rule-based TTS Neural TTS
生成方法 手作りルール・辞書ベース ディープラーニングによる学習ベース
音声の自然さ 機械的・単調 滑らかで人間的
柔軟性(声質・感情) 制御しやすいが不自然 データ次第で柔軟・感情表現可
開発コスト 小規模でも可能 大量データとGPUが必要
リアルタイム性 軽量・高速 モデルによる(最近はリアルタイム可能)
代表的技術 Formant, Concatenative Tacotron, FastSpeech, WaveNet
応用例 初期のカーナビ、読み上げ機器 音声アシスタント、AIナレーション、音声翻訳