sigmoid関数

Sa(x) = 1 /(x + exp(-ax))
シグモイド関数はxが負の無限大に近づくと分母は正の無限大になるので、yは0に近づき、xが正の無限大に近づくと分母は1に近づくのでyは1に近づく

import numpy as np

def sigmoid(x):
	return 1 / (1 + np.exp(-x))

print(sigmoid(0))

print(sigmoid(-6))

print(sigmoid(6))

[vagrant@localhost python]$ python myapp.py
0.5
0.0024726231566347743
0.9975273768433653

ラムダ式

import numpy as np
sigmoid = lambda x : 1 / (1 + np.exp(-x))

print(sigmoid(0))
print(sigmoid(-5))
print(sigmoid(5))

[vagrant@localhost python]$ python myapp.py
0.5
0.0066928509242848554
0.9933071490757153

計算自体は簡単だなー