Continuous supervised learning
discrete: fast slow
continuous
sklearn regression
http://scikit-learn.org/stable/modules/linear_model.html
>>> from sklearn import linear_model >>> reg = linear_model.LinearRegression() >>> reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2]) LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False) >>> reg.coef_ array([ 0.5, 0.5])
#!/usr/bin/python import numpy import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from studentRegression import studentReg from class_vis import prettyPicture, output_image from ages_net_worths import ageNetWorthData ages_train, ages_test, net_worths_train, net_worths_test = ageNetWorthData() reg = studentReg(ages_train, net_worths_train) plt.clf() plt.scatter(ages_train, net_worths_train, color="b", label="train data") plt.scatter(ages_test, net_worths_test, color="r", label="test data") plt.plot(ages_test, reg.predict(ages_test), color="black") plt.legend(loc=2) plt.xlabel("ages") plt.ylabel("net worths")
def studentRegression( ages_train, net_worths_train): from sklearn.linear_model import LinearRegression reg = LinearRegression() reg.fit( ages_train, net_worths_train ) return reg