r^2
how much of my change in the output(y) is explained by the change in my input(x)
0.0 < r^2 < 1.0 classification & regression property, supervised classification, regression output type, discrete(class labels), continuous(number) what are you trying to find?, decision boundary, best fit line evaluation, accuracy, "sum of squared error" r^2 Regression multi-variate age, IQ, education -> net worth
Multi-variate regression
y = 5×1 + 2.5×2 – 200
y = House Price
y = x1 – 10×2 + 500
import sys import pickle sys.path.append("../tools/") from feature_format import featureFormat, targetFeaturSplit dictionary = pickle.load( open("../final_project/final_project_dataset_modified.pkl","r")) features_list = ["bonus", "salary"] data = featureFormat( dictionary, features_list, remove_any_zeroes=True) target, features = targetFeatureSplit( data ) from sklearn.cross_validation import tarain_test_split feature_train, feature_test, target_train, target_test = train_test_split(features, target, test_size=0.5, random_state=42) train_color = "b" test_color = "b" import matplotlib.pyplot as plt for feature, target in zip(feature_test, target_test): plt.scatter( feature, target, color=test_color ) for feature, target in zip(feature_train, target_train): plt.scatter( feature, target, color=train_color ) plt.scatter(feature_test[0], target_test[0], color=test_color, label="test") plt.scatter(feature_test[0], target_test[0], color=train_color, label="train") try: plt.plot( feature_test, reg.predict(feature_test) ) except NameError: pass plt.xlabel(features_list[1]) plt.ylabel(features_list[0]) plt.legend() plt.show()