> v <- c(1, 3, 5) > v [1] 1 3 5 > v[2] [1] 3 > v[2] <- 10 > v [1] 1 10 5 > length(v) [1] 2 1] 2 > v <- seq(1, 10) > v [1] 1 2 3 4 5 6 7 8 9 10 > v <- rep(1:5, times=3) > v [1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 > x <- c(1, 3, 5) > y <- c(2, 4, 6) > x*2 [1] 2 6 10 > x + y [1] 3 7 11 > x > y [1] FALSE FALSE FALSE > x %in% y [1] FALSE FALSE FALSE > union(x, y) [1] 1 3 5 2 4 6 > intersect(x, y) numeric(0) > setdiff(x, y) [1] 1 3 5 > setequal(x, y) [1] FALSE > x <- c("S", "M", "L", "M", "L") > x [1] "S" "M" "L" "M" "L" > x.fc <- factor(x) > x.fc [1] S M L M L Levels: L M S > levels(x.fc) [1] "L" "M" "S" > x.or <- ordered(x, levels=c("S","M","L")) > x.or [1] S M L M L Levels: S < M < L > x <- matrix(1:6, nrow=3, ncol=2) > x [,1] [,2] [1,] 1 4 [2,] 2 5 [3,] 3 6 > > x <- matrix(1:6, nrow=3, ncol=2, byrow=TRUE) > x [,1] [,2] [1,] 1 2 [2,] 3 4 [3,] 5 6 > x <- rbind(c(1, 2), 3:4, 5:6) > x [,1] [,2] [1,] 1 2 [2,] 3 4 [3,] 5 6 > x <- cbind(c(1,2),3:4,5:6) > x [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 > x + 1 [,1] [,2] [,3] [1,] 2 4 6 [2,] 3 5 7 > 1/ x [,1] [,2] [,3] [1,] 1.0 0.3333333 0.2000000 [2,] 0.5 0.2500000 0.1666667 > dim(x) [1] 2 3 > nrow(x) [1] 2 > ncol(x) [1] 3 > x [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 > x[, 1] [1] 1 2 > x[2,] [1] 2 4 6 > x[1, 2] [1] 3 > x[1, 1:2] [1] 1 3 > x[1, c(1,2)] [1] 1 3 > x[1, 2] <- 10 > x [,1] [,2] [,3] [1,] 1 10 5 [2,] 2 4 6 > edit(x) col1 col2 col3 [1,] 1 10 5 [2,] 2 4 6 > x2 <- edit(x) > x [,1] [,2] [,3] [1,] 1 10 5 [2,] 2 4 6 > x <- list(5:10, "abc", matrix(1:6, nrow=2, ncol=3)) > x [[1]] [1] 5 6 7 8 9 10 [[2]] [1] "abc" [[3]] [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 > x[1] [[1]] [1] 5 6 7 8 9 10 > x[[1]] [1] 5 6 7 8 9 10 > x[[3]][1, 2] [1] 3 x <- read.table("sales.txt", header=TRUE, sep=",", na.strings="*") sum(x$sales), max(x$sales), mean(x$sales),median(x$sales),sd($sales) mean(x$DISTANCE, na.rm=TRUE), summary(x$sales), summary(x), str(x)