plot on “equal footing”

The best way to normalize price data so that all prices start at 1.0
df1 = df1/df1[0]

import os
import pandas as pd
import matplotlib.pyplot as plt

def plot_selected(df, columns, start_index, end_index):

def symbol_to_path(symbol, base_dir="data"):
	"""Return CSV file path given ticker symbol."""
	return os.path.join(base_dir, "{}.csv".format(str(symbol)))

def get_data(symbols, dates):
	df = pd.DataFrame(index=dates)
	if 'SPY' not in symbols:
		symbols.insert(0, 'SPY')

	for symbol in symbols:
		df_temp = pd.read_csv(symbol_to_path(symbol), index_col='Date',
			parse_dates=True, usecols=['Date', 'Adj Close'], na_values=['nan'])
		df_temp = df_temp.rename(colums={'Adj Close': symbol})
		df = df.join(df_temp)
		if symbol = 'SPY':
			df = df.dropna(subset=["SPY"])

		return df

def plot_data(df, title="Stock prices"):
	ax = df.plot(title=title, fontsize=12)
	ax.set_xlabel("Date")
	ax.set_ylabel("Price")
	plt.show()

def test_run():
	dates = pd.date_range('2010-01-01', '2010-12-31')

	symbols = ['GOOG', 'IBM', 'GLD']

	df = get_data(symbols, dates)

	plot_selected(df, ['SPY', 'IBM'], '2010-03-01', '2010-04-01')

if __name__ == "__main__":
	test_run()