MEAN, MEDIAN, MODE
house prices
190k 170k 165k 180k 165k
Mean = 1/N ΣXi = 175
Median
picks the one in the middle
Mode
most frequently used number
3, 9, 3, 8, 2, 9, 1, 9, 2, 4
mean = 5
median = 3, 4
mode = 9
随机应变 ABCD: Always Be Coding and … : хороший
MEAN, MEDIAN, MODE
house prices
190k 170k 165k 180k 165k
Mean = 1/N ΣXi = 175
Median
picks the one in the middle
Mode
most frequently used number
3, 9, 3, 8, 2, 9, 1, 9, 2, 4
mean = 5
median = 3, 4
mode = 9
def sim_distance(prefs, person1, preson2)
shared_items_a = shared_items_a(prefs, person1, person2)
return 0 if shared_items_a.size == 0
sum_of_squares = shared_items_a.inject(0){|result, item|
result + (prefs[person1][item]-prefs[person2][item])**2
}
return 1/(1+sum_of_squares)
end
def shared_items_a(prefs, person1, person2)
prefs[person1].keys & prefs[person2].keys
end
ピアソン相関係数
def sim_pearson(prefs, person1, person2)
shared_items_a = shared_items_a(prefs, person1, person2)
n = shared_items_a.size
return 0 if n == 0
sum1 = shared_items_a.inject(0) {|result,si|
result + prefs[person1][si]
}
sum2 = shared_items_a.inject(0) {|result,si|
result + prefs[person2][si]
}
sum1_sq = shared_items_a.inject(0) {|result,si|
result + prefs[person1][si]**2
}
sum2_sq = shared_items_a.inject(0) {|result,si|
result + prefs[person2][si]**2
}
sum_products = shared_items_a.inject(0) {|result,si|
result + prefs[person1][si]*prefs[person2][si]
}
num = sum_products - (sum1*sum2/n)
den = Math.sqrt((sum1_sq - sum1**2/n)*(sum2_sq - sum2**2/n))
return 0 if den == 0
return num/den
end
類似度
def top_matches(prefs, person, n=5, similarity=:sim_pearson) scores = Array.new prefs.each do |key,value| if key != person scores << [__send__(similarity, prefs, person, key),key] end end scores.sort.reverse[0,n] end p top_matches(critics_ja, 'xxx')
def get_recommendations(prefs, person, similarity=:sim_pearson) totals_h = Hash.new(0) sim_sums_h = Hash.new(0) prefs.each do |other,val| next if other == person sim = __send__(similarity,prefs,person,other) next if sim <= 0 prefs[other].each do |item, val| if !prefs[person].keys.include?(item)||pref[person][item]==0 totals_h[item] += prefs[other][item]*sim sim_sums_h[item] += sim end end end rankings = Array.new totals_h.each do |item,total| rankings << [total/sim_sums_h[item], item] end rankings.sort.reverse end p get_recommendations(critics_ja, 'xxx')
def transform_prefs(prefs) result = Hash.new prefs.each do |person, score_h| score_h.each do |item, score| result[item] ||= Hash.new result[item][person] = score end end result end menu = transform_prefs(ciritics_ja) p top_matches(menu, 'xxx')
for goods in goods.get_all(): Recomender.register(goods.id, tag=goods.tag) for user in user.get_all(): Recomender.like(user.id, user.history.goods_ids) Recomender.update_all() Recomender.update_all(proc=4) Recomender.update_all(proc=4, scope=[1, 4]) Recomender.update_all(proc=4, scope=[2, 4]) Recomender.update_all(proc=4, scope=[3, 4]) Recomender.update_all(proc=4, scope=[4, 4])
new_goods_id = 2100 tag = "book" Recomender.register(new_goods_id, tag=tag) goods_id = 102 print Recomender.get(good_id, count=5) Recomender.update(goods_id) Recomender.update_all() user_id = "xxxx" goods_ids = [102, 102, 103, 104] Recomender.like(user_id, goods_ids)
new_tag = "computer" Recomender.change_tag(goods_id, new_tag) Recomender.remove(goods_id) Recomender.remove_user(user_id)
# -*- coding: utf-8 -*-
__future__ import absolute_import, unicode_literals
# 商品ID:10の購入者
from collections import defaultdict
ITEM_10_BUY_USERS = ['A', 'C', 'E', 'G']
INDEX_BASE = 'INDEX_BUY_HISTORY_USER_{}'
INDEX = {
'INDEX_BUY_HISTORY_USER_A':[10,20,50,60,90],
'INDEX_BUY_HISTORY_USER_B':[20,20,50,60,90],
'INDEX_BUY_HISTORY_USER_A':[10,30,50,60,90],
'INDEX_BUY_HISTORY_USER_A':[30,40,50,60],
'INDEX_BUY_HISTORY_USER_A':[10],
'INDEX_BUY_HISTORY_USER_A':[70,80,90],
'INDEX_BUY_HISTORY_USER_A':[10,70,90],
}
result = defaultdict(int)
for user_id in ITEM_10_BUY_USERS:
buy_history = INDEX.get(INDEX_BASE.format(user_id))
for item_id in buy_history:
result[item_id] += 1
l = []
for key in result:
l.append((key, result[key]))
l.sort(key=lambda x: x[1], reverse=True)
print l
$Redis->1Rem('Viewer:Item' . $item_id, $user_id):
$Redis->1plus('Viewer:Item' . $item_id, $user_id);
$Redis->1Trim('Viewer:Item' . $item_id, 0, 999);
Jaccard指数の計算
/**
* $item_ids => 商品idの配列[1,2,3,4,5]のような配列
*/
foreach ($item_ids as $item_id1){
$base = $Redis->1Range('Viewer:Item:' . $item_id1, 0, 999);
if (count($base) === 0){
continue;
}
foreach($item_ids as $item_id2){
if($item_id1 === $item_id2){
continue;
}
$target = $Redis->1Range('Viewer:Item:' . $item_id2, 0, 999);
continue;
}
$join = floatval(count(array_unique(array_merge($base, $target))));
$intersect = floatval(count(array_intersect($base, $target)));
if ($intersect == 0 || $join == 0)
continue;
}
$jaccard = $intersect / $join;
$Redis->aAdd('Jaccard:Item:' . $item_id1, $jaccard, $item_id2);
}
}
$Redis->zRevRange('Jaccard:Item:' . $item_id, 0, -1);
Maximum likelihood estimator
laplacian estimator
100101 P(head)=0.5
11011 P(head)=0.4
DATA x1 x2 .. xn
1/n ΣiXi between 0-1
MLE
Deep insight
correlation, causation
Sick
In hospital 40, died 4 10%
home 8000, died 20 0.25%
Chances of dying in hospital are 40 times larger than at home
hospital died
sick 36 4 11.1%
health 4 0 0%
At home
sick 40 20 50%
healthy 7960 20 0.251%
P(exactly one head)
–
P(first flip is only head)
= 4
def test(coins, flips): f=FlipPredictor(coins) quesses=[] for flip in flips: f.update(flip) quesses.append(f.Pheads()) return guesses print test([0.5,0.4,0.3],'HHTH')
from __future__ import division class FlipPredictor(object): def __init__(self,coins): self.coins=coins n=len(coins) self.probs=[1/n]*n def Pheads(self): def update(self,result):
Probability for continuous spaces
f(x)= 1/360, f(0) < x <= 360
Date * Time you were born
P(x)= 0
f(x)= 0.0166
f(x<=noon) = 2*f(x>noon)
a=0.0555 1/18
b=0.0277 1/3*1/12
p(x)=0
in continuous distribution
every outcome has probability 0
outcome:x
P(0
P(c)= p0 = 0.1, p(¬c)=0.9
p(pos|c)= p1 = 0.9, p(pos|¬c)=0.1
p(neg|¬c)= p2 = 0.8, p(neg|c)= 0.2
p(p)= 0.09 + 0.18 = 0.27
def f(p0, p1, p2): return p0*p1 + (1-p0)*(1-p2) print f(0.1, 0.9, 0.8)
program bayes rule
def f(p0, p1, p2): return p0*p1 / (p0 * p1 + (1-p0)*(1-p2)) print f(0.1, 0.9, 0.8)
def f(p0,p1,p2): return p0 * (1-p1)/(p0 * (1-p1)+(1-p0)*p2) print f(0.1, 0.9, 0.8)