Support Vector Machine

SVM Support Vector Machine
Maximizes distance to nearest point
= margin

if you go to machine learning party, everybody talk machine learning

SVMs – Outliers

SVM in SKlearn
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

import numpy as np
import pylab as pl

features_train, labels_train, features_test, labels_test = makeTerrainData()

from sklearn.svm import SVC
clf = SVC(kernel="linear")
clf.fit( features_train, labels_train )
pred = clf.predict( features_test )

from sklearn.metrics import accuracy_score
acc = accuracy_score(pred, labels_test)

def submitAccuracy():
	return acc

Cancer Test

Example P(C)=0.01
test:
90% it is positive if you have cancer (sensitivity)
90% it is negative if you don’t have cancer (specitnity)

Bayes Rule
prior probability * test evidence -> potential probability

prior: P(c) = 0.01 = 1%
P(Positive|Cancer) = 0.9 = 90%
P(Neg|¬C)=0.9, P(positive|¬cancer) = 0.1
posterior: P(cancer|Positive) = P(Cancer)*P(Positive|C) = 0.009
P(¬cancer|Positive) = P(¬cancer)*(Positive|¬cancer) = 0.099
normalize:P(Pos)=P(cancer|Positive)+P(¬cancer|Positive)=0.108

Text Learning – Naive Bayes
Chris: love 1, deal 8, life 1
Sara: love 3, deal 2, life 3
P(Chris) = 0.5
P(Sara) = 0.5
Sara use love and life frequency.

Calculating NBAccuracy

def NBAccuracy(features_train, labels_train, features_test, labels_test):

	from sklearn.naive_bayes import GaussianNB
	clf = GaussianNB()
	pref = clf.predict(features_test)
	accuracy =
	return accuracy

from class_vis import prettyPicture
from prep_terrain_data import makeTerrainData
from classify import NBAccuracy

import matplotlib.pyplot as plt
import numpy as np
import pylab as pl

features_train, labels_train, features_test, labels_test = makeTerrainData()

def submitAccuracy():
	accuracy = NBAccuracy(features_train, labels_train, features_test, labels_test)
	return accuracy

GaussianNB Deployment

#!/usr/bin/python

from prep_terrain_data import makeTerrainData
from class_vis import prettyPicture, output_image
from ClassyfyNB import classify

import numpy as np
import pylab as pl

features_train, labels_train, features_test, labels_test = makeTerrainData()

grade_fast = [features_tarain[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]=0]
bumpy_fast = [features_tarain[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]=0]
grade_slow = [features_tarain[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]=1]
bumpy_slow = [features_tarain[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]=1]

clf = classify(features_train, labels_train)

prettyPicture(clf, features_test, labels_test)
output_image("test.png", "png", open("test.png", "rb").read())
#!/usr/bin/python

#from ***plots import *
import warnings
warnings.filterwarnings("ignore")

import matplotlib
matplotlib.use('agg')

import matplotlib.pyplot as plt
import pylab as pl
import numpy as np

def prettyPicture(clf, X_test, y_test):
	x_min = 0.0; x_max = 1.0
	y_min = 0.0; y_max = 1.0

	h = .01
	xx, yy = np.meshgrid(np.arrange(x_min, x_max, h), np.arange(y_min, y_max, h))
	Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

	Z = Z.reshape(xx.shape)
	plt.xlim(xx.min(), xx.max())
	plt.ylim(yy.min(), yy.max())

	plt.pcolormesh(xx, yy, Z, cmap=pl.cm.seismic)

	grade_fast = [features_tarain[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]=0]
	bumpy_fast = [features_tarain[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]=0]
	grade_slow = [features_tarain[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]=1]
	bumpy_slow = [features_tarain[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]=1]

	plt.scatter(grade_sig, bumpy_sig, color="b", label="fast")
	plt.scatter(grade_bkg, bumpy_bkg, color="r", label="slow")
	plt.legend()
	plt.xlabel("bumpiness")
	plt.ylabel("grade")

	plt.savefig("test.png")

import base64
import json
import subprocess

def output_image(name, format, bytes):
	image_start = "BEGIN_IMAGE_f9825uweof8jw9fj4r8"
	image_end = "END_IMAGE_0238jfw08fjsiufhw8frs"
	data = {}
	data['name'] = name
	data['format'] = format
	data['bytes'] = base64.encodestring(bytes)
	print image_start+json.dumps(data)+image_end
#!/usr/bin/python
import random

def makeTerrainData(n_points=1000):
	random.seed(42)
	grade = [random.random() for ii in range(0,n_points)]
	bumpy = [random.random() for ii in range(0,n_points)]
	error = [random.random() for ii in range(0,n_points)]
	y = [round(grade[ii]*bumpy[ii]+0.3+0.1*error[ii]) for ii in range(0,n_points)]
	for ii in range(0, len(y)):
		if grade[ii]>0.8 or bumpy[ii]>0.8:
			y[ii] = 1.0

	X = [[gg, ss] for gg, ss in zip(grade, bumpy)]
	split = int(0.75*n_points)
	X_train = X[0:split]
	X_test = X[split:]
	y_train = y[0:split]
	y_test = y[split:]

	grade_sig = [X_train[ii][0] for ii in range(0, len(X_train[i])) if y_train[ii]==0]
	bumpy_sig = [X_train[ii][1] for ii in range(0, len(X_train[i])) if y_train[ii]==0]
	grade_sig = [X_train[ii][0] for ii in range(0, len(X_train[i])) if y_train[ii]==1]
	bumpy_sig = [X_train[ii][1] for ii in range(0, len(X_train[i])) if y_train[ii]==1]

	grade_sig = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii]==0]
    bumpy_sig = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii]==0]
    grade_bkg = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii]==1]
    bumpy_bkg = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii]==1]

    test_data = {"fast":{"grade":grade_sig, "bumpiness":bumpy_sig}
    			, "slow":{"grade":grade_bkg, "bumpiness":bumpy_bkg}}

    return X_train, y_train, X_test, y_test

Scatter Plot

Bumpiness: smooth – bad
slope : flat – very steep

more like red x of blue circle, that’s most important in machine learning

Decision surface: Linear

Naive Bayes
Zooming ahead on supervised classification with python!
goal: draw decision boundary

http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
come with page, just run with python interpreter

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> Y = np.array([1, 1, 1, 2, 2, 2])
>>> from sklearn.naive_bayes import GaussianNB
>>> clf = GaussianNB()
>>> clf.fit(X, Y)
GaussianNB(priors=None)
>>> print(clf.predict([[-0.8, -1]]))
[1]
>>> clf_pf = GaussianNB()
>>> clf_pf.partial_fit(X, Y, np.unique(Y))
GaussianNB(priors=None)
>>> print(clf_pf.predict([[-0.8, -1]]))
[1]
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.scatter(grade_sig, bumpy_sig, color = "b", label = "fast!")
plt.scatter(grade_bkg, bumpy_bkg, color = "r", label = "slow")
plt.legend()
plt.xlabel("bumpiness")
plt.ylabel("grade")
plt.show()

from sklearn.naive_bayes import GaussianNB
clt = GaussianNB()
clf.fit(features_train, labels_train)
pred = clf.predict(features_test)
#coding:utf-8
import math
import sys
from collections import defaultdict

class NaiveBayes:
	"""Multinomial Naive Bayes"""
	def __init__(self):
		self.categories = set()
		self.vocabularies = set()
		self.wordcount = {}
		self.catcount = {}
		self.denominator = {}

	def train(self, data):
		"""ナイーブベイズ分類器の訓練"""
		# 文書集合からカテゴリを抽出して辞書を初期化
		for d in data:
			cat = d[0]
			self.categories.add(cat)
		for cat in self.categories:
			self.wordcount[cat] = defaultdict(int)
			self.catcount[cat] = 0
		# 文書集合からカテゴリと単語をカウント
		for d in data:
			cat, doc = d[0], d[1:]
			self.catcount[cat] += 1
			for word in doc:
				self.vocabularies.add(word)
				self.wordcount[cat][word] += 1
		# 単語の条件付き確率の分母の値をあらかじめ一括計算しておく (高速化のため)
		for cat in self.categories:
			self.denominator[cat] = sum(self.wordcount[cat].values()) + len(self.yocabularies)

		def classify(self, doc):
			"""事後確率の対数 log(P(cat|doc))がもっとも大きなカテゴリを返す"""
			best = None
			max = -sys.maxint
			for cat in self.catcount.keys():
				p = self.score(docs, cat)
				if p > max:
					max = p
					best = cat
			return best

			def wordProb(self, word, cat):
				"""単語の条件付き確率 P(word|cat)を求める"""
				# ラプサムスムージングを適用
				# wordcount[cat]はdefaultdict(int)なのでカテゴリに存在しなかった単語はデフォルトの0を返す
				return float(self.wordcount[cat][word] + 1)/ float(self.denominator[cat])

				score(self, doc, cat):
				"""文書が与えられたときのカテゴリの事後確率の対数 log(P(cat|doc))を求める"""
				total = sum(self.catcount.values()) #総文書数
				score = math.log(float(self.catcount[cat]) / total) # log P(cat)
				for word in doc:
					# logをとると掛け算は足し算に
					score += math.log(self.wordProb(word, cat)) # log P(word|cat)
				return score

				__str__(self):
				total = sum(self.catcount.values()) #総文書数
				return "documents: %d, vocabularies: %d, categories: %d" % (total, len(self.vocabularies), len(self.categories))

	if __name__ == "__main__":
		# Introduction to Information Retrieval 13.2
		data = [["yes", "chinese", "Beijin", "Chinese"],
				["yes","chinese", "Chinse", "Shanghai"],
				["yes","Chinese", "Macao"],
				["no","Tokyo","Japan","Chinse"]]

		#ナイーブベイズ分類器を訓練
		nb = NaiveBayes()
		nb.train(data)
		print nb
		print "P(Chinese|yes) =", nb.wordProb("Chinese", "yes")
		print "P(Tokyo|yes) =", nb.wordProb("Tokyo", "yes")
		print "P(Japan|yes) =", nb.wordProb("Japan", "yes")
		print "P(Chinese|no) =", nb.wordProb("Chinese", "no")
		print "P(Tokyo|no) =", nb.wordProb("Tokyo", "no")
		print "P(Japan|no) =", nb.wordProb("Japan", "no")

		test = ["Chinese","Chinese", "Chinese", "Tokyo", "Japan"]
		print "log P(yest|test) =", nb.score(test, "yes")
		print "log P(no|test) =", nb.score(test, "no")
		print nb.classify(test)

Naive Bayes

self driving car, supervising case

acerous, non-acerous
horse is categorized non-acerous

machine learning: give you bunch of example, features
pick up right feature, and you can classify new example

supervised classification examples
-from an album of tagged photos, recognize someone in a picture(facebook always dose)
-given someone’s music choices and a bunch of features of that music (tempo, genre, etc.) recommend a new song

unsupervised learning
-analyze bank data for weird-looking transactions, and flag those for fraud
-cluster students into types based on learning styles

Feature and Labels
LET IT Go
Features: intensity, tempo, genre, gender

tempo: relaxed – fast
intensity: light – soaring
She likes those, she doesn’t like
Scatter Plot

Special Relativity

-Unintuitive
-Very Fast

C = 3 * 10^8 m/s
299,792,458 m/s

Where to Begin?
Einstein, Galileo

Two postulates, logic, conclusion

Spaceship Flyby2
t’ = γt
γ= 1/√1-β^2

orbit satellite
β = 14000km / hr * 1000m / Km * 1hr / 3600s = 3890 m/s

Wret = ΔPE
= PEf – PEo

Dead Reckoning
Direction, speed, duration
East, 12km/h, 2.5hrs
south, 20km/h, 1hr

Conservation of Charge

The total charge in the universe never changes.
Closed System -> No charge being added to or removed from the system.

Friction
Conduction
Induction

Infinite source and sink of electrons
Grounding

Electric Potential Energy
When r is small, Ue is highest.
Ue = K q1q2/r
K = 9*10^9

E = 1000 N/C
d = 1cm
Mp = 1.673 * 10 ^ -27
g = 1.602 * 10 ^ -19C

F = Eg
na = Eg
a = Eg/m

ΔKE = Egx
W = Fx = Egx