information gain = entropy(parent) – [weighted average] entropy(children)
decision tree algorithm: maximize information gain
>>> -2/3*math.log(2/3, 2) – 1/3*math.log(1/3, 2)
entropy(children) = 3/4(0.9184)+1/4(0)
0.3112
随机应变 ABCD: Always Be Coding and … : хороший
information gain = entropy(parent) – [weighted average] entropy(children)
decision tree algorithm: maximize information gain
>>> -2/3*math.log(2/3, 2) – 1/3*math.log(1/3, 2)
entropy(children) = 3/4(0.9184)+1/4(0)
0.3112
Entropy: controls how a DT decides where to split the data
definition: measure of impurity in a bunch of examples
entropy = Σi -Pi log2 (Pi)
Pi is fraction of examples in class i
all examples are same class -> entropy = 〇
examples are evenly split between classes -> entropy = 1.0
grade, bumpiness, speed limit, speed
ssff
Pi = 2 / 4 = 0.5
entropy
>>> import math >>> -0.5*math.log(0.5, 2) - 0.5*math.log(0.5, 2) 1.0
import sys from class_vis import prettyPicture from prep_terrain_data import makeTerrainData import matplotlib.pyplot as plt import numpy as np import pylab as pl features_train, labels_train, features_test, labels_test = makeTerrainData() def submitAccuracies(): return ["acc_min_samples_split_2":round(acc_min_samples_split_2,3), "acc_min_samples_split_50":round(acc_min_samples_split_50,3)]
Decision Tree:very popular, oldest, most useful
->trick, non-linear decision making
wind surf
linearly separable?
Decision Trees:
two outcomes Yes or No? to classify official data.
X < 3, Y < 2 sk learning: decision tree http://scikit-learn.org/stable/modules/tree.html classification
>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)
>>> clf.predict([[2., 2.]])
array([1])
>>> clf.predict_proba([[2., 2.]])
array([[ 0., 1.]])
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> iris = load_iris()
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(iris.data, iris.target)
>>> with open(“iris.dot”, ‘w’) as f:
… f = tree.export_graphviz(clf, out_file=f)
>>> import os
>>> os.unlink(‘iris.dot’)
>>> import pydotplus
>>> dot_data = tree.export_graphviz(clf, out_file=None)
>>> graph = pydotplus.graph_from_dot_data(dot_data)
>>> graph.write_pdf(“iris.pdf”)
>>> from IPython.display import Image
>>> dot_data = tree.export_graphviz(clf, out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
special_characters=True)
>>> graph = pydotplus.graph_from_dot_data(dot_data)
>>> Image(graph.create_png())
DT decision boundary
import sys
from class_vis import prettyPicture
from prep_terrain_data import makeTerrainData
import numpy as np
import pylab as pl
features_train, labels_train, features_test, labels_test = makeTerrainData()
acc =
def submitAccuracies():
return {"acc":round(acc,3)}
x, y -> svm -> label
z= x^2 + y^2
Kernel Trick
x, y -> x1, x2, x3, x4, x5
SVM γ(gamma) parameter
γ- define how far the influence of single training example reaches
low values – far
high values – close
Overfitting: stop overfitting
features_train = features_train[:len(features_train)/100]
labels_train = labels_train[:len(labels_train)/100]
SVM Support Vector Machine
Maximizes distance to nearest point
= margin
if you go to machine learning party, everybody talk machine learning
SVMs – Outliers
SVM in SKlearn
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
import numpy as np import pylab as pl features_train, labels_train, features_test, labels_test = makeTerrainData() from sklearn.svm import SVC clf = SVC(kernel="linear") clf.fit( features_train, labels_train ) pred = clf.predict( features_test ) from sklearn.metrics import accuracy_score acc = accuracy_score(pred, labels_test) def submitAccuracy(): return acc
Example P(C)=0.01
test:
90% it is positive if you have cancer (sensitivity)
90% it is negative if you don’t have cancer (specitnity)
Bayes Rule
prior probability * test evidence -> potential probability
prior: P(c) = 0.01 = 1%
P(Positive|Cancer) = 0.9 = 90%
P(Neg|¬C)=0.9, P(positive|¬cancer) = 0.1
posterior: P(cancer|Positive) = P(Cancer)*P(Positive|C) = 0.009
P(¬cancer|Positive) = P(¬cancer)*(Positive|¬cancer) = 0.099
normalize:P(Pos)=P(cancer|Positive)+P(¬cancer|Positive)=0.108
Text Learning – Naive Bayes
Chris: love 1, deal 8, life 1
Sara: love 3, deal 2, life 3
P(Chris) = 0.5
P(Sara) = 0.5
Sara use love and life frequency.
def NBAccuracy(features_train, labels_train, features_test, labels_test): from sklearn.naive_bayes import GaussianNB clf = GaussianNB() pref = clf.predict(features_test) accuracy = return accuracy from class_vis import prettyPicture from prep_terrain_data import makeTerrainData from classify import NBAccuracy import matplotlib.pyplot as plt import numpy as np import pylab as pl features_train, labels_train, features_test, labels_test = makeTerrainData() def submitAccuracy(): accuracy = NBAccuracy(features_train, labels_train, features_test, labels_test) return accuracy
#!/usr/bin/python
from prep_terrain_data import makeTerrainData
from class_vis import prettyPicture, output_image
from ClassyfyNB import classify
import numpy as np
import pylab as pl
features_train, labels_train, features_test, labels_test = makeTerrainData()
grade_fast = [features_tarain[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]=0]
bumpy_fast = [features_tarain[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]=0]
grade_slow = [features_tarain[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]=1]
bumpy_slow = [features_tarain[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]=1]
clf = classify(features_train, labels_train)
prettyPicture(clf, features_test, labels_test)
output_image("test.png", "png", open("test.png", "rb").read())
#!/usr/bin/python
#from ***plots import *
import warnings
warnings.filterwarnings("ignore")
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import pylab as pl
import numpy as np
def prettyPicture(clf, X_test, y_test):
x_min = 0.0; x_max = 1.0
y_min = 0.0; y_max = 1.0
h = .01
xx, yy = np.meshgrid(np.arrange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.pcolormesh(xx, yy, Z, cmap=pl.cm.seismic)
grade_fast = [features_tarain[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]=0]
bumpy_fast = [features_tarain[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]=0]
grade_slow = [features_tarain[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]=1]
bumpy_slow = [features_tarain[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]=1]
plt.scatter(grade_sig, bumpy_sig, color="b", label="fast")
plt.scatter(grade_bkg, bumpy_bkg, color="r", label="slow")
plt.legend()
plt.xlabel("bumpiness")
plt.ylabel("grade")
plt.savefig("test.png")
import base64
import json
import subprocess
def output_image(name, format, bytes):
image_start = "BEGIN_IMAGE_f9825uweof8jw9fj4r8"
image_end = "END_IMAGE_0238jfw08fjsiufhw8frs"
data = {}
data['name'] = name
data['format'] = format
data['bytes'] = base64.encodestring(bytes)
print image_start+json.dumps(data)+image_end
#!/usr/bin/python
import random
def makeTerrainData(n_points=1000):
random.seed(42)
grade = [random.random() for ii in range(0,n_points)]
bumpy = [random.random() for ii in range(0,n_points)]
error = [random.random() for ii in range(0,n_points)]
y = [round(grade[ii]*bumpy[ii]+0.3+0.1*error[ii]) for ii in range(0,n_points)]
for ii in range(0, len(y)):
if grade[ii]>0.8 or bumpy[ii]>0.8:
y[ii] = 1.0
X = [[gg, ss] for gg, ss in zip(grade, bumpy)]
split = int(0.75*n_points)
X_train = X[0:split]
X_test = X[split:]
y_train = y[0:split]
y_test = y[split:]
grade_sig = [X_train[ii][0] for ii in range(0, len(X_train[i])) if y_train[ii]==0]
bumpy_sig = [X_train[ii][1] for ii in range(0, len(X_train[i])) if y_train[ii]==0]
grade_sig = [X_train[ii][0] for ii in range(0, len(X_train[i])) if y_train[ii]==1]
bumpy_sig = [X_train[ii][1] for ii in range(0, len(X_train[i])) if y_train[ii]==1]
grade_sig = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii]==0]
bumpy_sig = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii]==0]
grade_bkg = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii]==1]
bumpy_bkg = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii]==1]
test_data = {"fast":{"grade":grade_sig, "bumpiness":bumpy_sig}
, "slow":{"grade":grade_bkg, "bumpiness":bumpy_bkg}}
return X_train, y_train, X_test, y_test
Bumpiness: smooth – bad
slope : flat – very steep
more like red x of blue circle, that’s most important in machine learning
Decision surface: Linear
Naive Bayes
Zooming ahead on supervised classification with python!
goal: draw decision boundary
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
come with page, just run with python interpreter
>>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> Y = np.array([1, 1, 1, 2, 2, 2]) >>> from sklearn.naive_bayes import GaussianNB >>> clf = GaussianNB() >>> clf.fit(X, Y) GaussianNB(priors=None) >>> print(clf.predict([[-0.8, -1]])) [1] >>> clf_pf = GaussianNB() >>> clf_pf.partial_fit(X, Y, np.unique(Y)) GaussianNB(priors=None) >>> print(clf_pf.predict([[-0.8, -1]])) [1]
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.scatter(grade_sig, bumpy_sig, color = "b", label = "fast!")
plt.scatter(grade_bkg, bumpy_bkg, color = "r", label = "slow")
plt.legend()
plt.xlabel("bumpiness")
plt.ylabel("grade")
plt.show()
from sklearn.naive_bayes import GaussianNB
clt = GaussianNB()
clf.fit(features_train, labels_train)
pred = clf.predict(features_test)
#coding:utf-8
import math
import sys
from collections import defaultdict
class NaiveBayes:
"""Multinomial Naive Bayes"""
def __init__(self):
self.categories = set()
self.vocabularies = set()
self.wordcount = {}
self.catcount = {}
self.denominator = {}
def train(self, data):
"""ナイーブベイズ分類器の訓練"""
# 文書集合からカテゴリを抽出して辞書を初期化
for d in data:
cat = d[0]
self.categories.add(cat)
for cat in self.categories:
self.wordcount[cat] = defaultdict(int)
self.catcount[cat] = 0
# 文書集合からカテゴリと単語をカウント
for d in data:
cat, doc = d[0], d[1:]
self.catcount[cat] += 1
for word in doc:
self.vocabularies.add(word)
self.wordcount[cat][word] += 1
# 単語の条件付き確率の分母の値をあらかじめ一括計算しておく (高速化のため)
for cat in self.categories:
self.denominator[cat] = sum(self.wordcount[cat].values()) + len(self.yocabularies)
def classify(self, doc):
"""事後確率の対数 log(P(cat|doc))がもっとも大きなカテゴリを返す"""
best = None
max = -sys.maxint
for cat in self.catcount.keys():
p = self.score(docs, cat)
if p > max:
max = p
best = cat
return best
def wordProb(self, word, cat):
"""単語の条件付き確率 P(word|cat)を求める"""
# ラプサムスムージングを適用
# wordcount[cat]はdefaultdict(int)なのでカテゴリに存在しなかった単語はデフォルトの0を返す
return float(self.wordcount[cat][word] + 1)/ float(self.denominator[cat])
score(self, doc, cat):
"""文書が与えられたときのカテゴリの事後確率の対数 log(P(cat|doc))を求める"""
total = sum(self.catcount.values()) #総文書数
score = math.log(float(self.catcount[cat]) / total) # log P(cat)
for word in doc:
# logをとると掛け算は足し算に
score += math.log(self.wordProb(word, cat)) # log P(word|cat)
return score
__str__(self):
total = sum(self.catcount.values()) #総文書数
return "documents: %d, vocabularies: %d, categories: %d" % (total, len(self.vocabularies), len(self.categories))
if __name__ == "__main__":
# Introduction to Information Retrieval 13.2
data = [["yes", "chinese", "Beijin", "Chinese"],
["yes","chinese", "Chinse", "Shanghai"],
["yes","Chinese", "Macao"],
["no","Tokyo","Japan","Chinse"]]
#ナイーブベイズ分類器を訓練
nb = NaiveBayes()
nb.train(data)
print nb
print "P(Chinese|yes) =", nb.wordProb("Chinese", "yes")
print "P(Tokyo|yes) =", nb.wordProb("Tokyo", "yes")
print "P(Japan|yes) =", nb.wordProb("Japan", "yes")
print "P(Chinese|no) =", nb.wordProb("Chinese", "no")
print "P(Tokyo|no) =", nb.wordProb("Tokyo", "no")
print "P(Japan|no) =", nb.wordProb("Japan", "no")
test = ["Chinese","Chinese", "Chinese", "Tokyo", "Japan"]
print "log P(yest|test) =", nb.score(test, "yes")
print "log P(no|test) =", nb.score(test, "no")
print nb.classify(test)