an optimizer
– find minimum values of functions
– build parameterized models based on data
– refine allocations to stocks in portfolios
f(x) = x^2 + x^3 + s
f(x) = (x-1.5)^2 + 0.5
"""Minimize an objective function, using SciPy.""" import pandas as pd import matplotlib.pyplot as plt import numpy as np import scipy.optimize as spo def f(X): """Given a scalar X, return some value (a real number).""" Y = (X - 1.5)**2 + 0.5 print "X = {}, Y = {}".format(X, Y) return Y def test_run(): Xguess = 2.0 min_result = spo.minimize(f, Xguess, method='SLSQP', options={'disp': True}) print "Minima found at:" print "X = {}, Y = {}".format(min_result.x, min_result.fun) if __name__ == "__main__": test_run()