import numpy as np countries = np.array([ 'Afghanistan', 'Albania', 'Algeria', 'Angola', 'Argentina', 'Armenia', 'Australia', 'Austria', 'Azerbaijan', 'Bahamas', 'Bahrain', 'Bangladesh', 'Barbados', 'Belarus', 'Belgium', 'Belize', 'Benin', 'Bhutan', 'Bolivia', 'Bosnia and Herzegovina' ]) employment = np.array([ 55.70000076, 51.40000153, 50.5 , 75.69999695, 58.40000153, 40.09999847, 61.5 , 57.09999847, 60.90000153, 66.59999847, 60.40000153, 68.09999847, 66.90000153, 53.40000153, 48.59999847, 56.79999924, 71.59999847, 58.40000153, 70.40000153, 41.20000076 ]) if False: print countries[0] print countries[3] if False: print countries[0:3] print countries[:3] print countries[17:] print countries[:] if False: print countries.dtype print employment.dtype print np.array([0, 1, 2, 3]).dtype print np.array([1.0, 1.5, 2.0, 2.5]).dtype print np.array([True, False, True]).dtype print np.array(['AL', 'AK', 'AZ', 'AR', 'CA']).dtype if False: for country in countries: print 'Examining country {}'.format(country) for i in range(len(countries)): country = countries[i] country_employment = employment[i] print 'Country {} has employment {}'.format(country, country_employment) if False: print employment.mean() print employment.std() print employment.max() print employment.sum() def max_employment(countries, employment): max_country = None max_value = None return (max_country, max_value)