KALMAN FILTER : continuous uni-modal
MONTE CARLO Localization : discrete
f(x) = 1/√2πΩ2 exp -1/2(x-μ2)/Θ2
Gaussians smallest is preferred.
maximize gaussian
from math import * def f(mu, sigma2, x): return 1/sqrt(2.*pi*sigma2) * exp(-.5 * (x-mu)**2 / sigma2) print f(10., 4., 8.)
new mean
def update(mean1, var1, mean2, var2): new_mean = (var2 * mean1 + var1 * mean2)/(var1 + var2) new_var = 1 / (1/var1 + 1 / var2) return [new_mean, new_var] print update(10.,8.,13.,2.)
prediction
def update(mean1, var1, mean2, var2): new_mean = (var2 * mean1 + var1 * mean2)/(var1 + var2) new_var = 1 / (1/var1 + 1 / var2) return [new_mean, new_var] def predict(mean1, var1, mean2, var2): new_mean = mean1 + mean2 new_var = var1 + var2 return [new_mean, new_var] print update(10.,8.,13.,2.) print predict(10., 4., 12., 4.)
def update(mean1, var1, mean2, var2): new_mean = (var2 * mean1 + var1 * mean2)/(var1 + var2) new_var = 1 / (1/var1 + 1 / var2) return [new_mean, new_var] def predict(mean1, var1, mean2, var2): new_mean = mean1 + mean2 new_var = var1 + var2 return [new_mean, new_var] measurements = [5., 6., 7., 9., 10.] motion = [1., 1., 2., 1., 1.] measurement_sig = 4. motion_sig = 2. mu = 0. sig = 10000. for n in range(len(measurements)): [mu, sig] = update(mu, sig, measurements[n], measurement_sig) print 'update: ', [mu, sig] [mu, sig] = predict(mu, sig, motion[n], motion_sig) print 'predict: ', [mu, sig] print update(10.,8.,13.,2.) print predict(10., 4., 12., 4.)