DNN

入力値: x
重み: w
バイアス: b
活性化: σ

wx + b -> σ(wx + b) = 出力α

MNISTの場合、入力層は784ノード
つまり、画像認識の場合、入力層がピクセル数というイメージだ。
出力層では確率を表しており、確率の高い出力結果をoutputする
例えば、MNISTのように数字が0~9だと10通りだが、自動運転のように外景全てを認識させるとなると、無数に広がる
-> ということは1000万画素の画像認識の場合はノードは1000万?
-> 信号、人、建物、のように出力を絞れば可能か?
-> 人間の顔の場合は、目、鼻など特徴抽出ができるが、ルールがない場合は、頻度の問題が常に生じる??

活性化関数σにはシグモイド関数ReLu関数がよく用いられる
シグモイド関数: 1/(1+exp(-x))
ReLu関数: max(0,x)
-> 線形分離不可能なデータを分離するのに有効