import pandas as pd
grades_df = pd.DataFrame(
data={'exam1': [43, 81, 78, 75, 89, 70, 91, 65, 98, 87],
'exam2': [24, 63, 56, 56, 67, 51, 79, 46, 72, 60]},
index=['Andre', 'Barry', 'Chris', 'Dan', 'Emilio',
'Fred', 'Greta', 'Humbert', 'Ivan', 'James']
)
if False:
def convert_grades_curve(exam_grades):
return pd.qcut(exam_grades,
[0, 0.1, 0.2, 0.5, 0.8, 1],
labels=['F','D','C','B','A'])
print convert_grades_curve(grades_df['exam1'])
print grades_df.apply(convert_grades_curve)
def standardize(df):
return None
import numpy as np
import pandas as pd
df = pd.DataFrame({
'a': [4,5,3,1,2],
'b': [20,10,40,50,30],
'c': [25,20, 5, 15, 10]
})
if False:
print df.apply(np.mean)
print df.apply(np.max)
def second_largest(df):
return None