A Contagious Disease
infectious, suspicious, Recovered
SIR Model
I(t)
R(t)= 1/5days * I(t)
A model for infection
S(t):number of suspicious person
I(t):number of infectious person
I(t) = 5 * 10^-9 / day*person I(t)*S(t)
SIR Model
S(t)= -5*10^-9/day*person I(t)S(t)
I(t) = 5 * 10^-9 / day*person I(t)*S(t)
R(t)= 1/5days * I(t)
System, Explicit
from xxx import * h = 0.5 transmission_coeff = 5e-9 latency_time = 1. infectious_time = 5. end_time = 60.0 num_steps = int(end_time / h) times = h * numpy.array(range(num_steps + 1)) def seir_model(): s = numpy.zeros(num_steps + 1) e = numpy.zeros(num_steps + 1) i = numpy.zeros(num_steps + 1) r = numpy.zeros(num_steps + 1) s[0] = 1e8 - 1e6 - 1e5 e[0] = 0. i[0] = 1e5 r[0] = 1e6 for step in range(num_steps): return s, e, i, r s, e, i, r = seir_model() @show_plot def plot_me(): s_plot = matplotlib.pyplot.plot(times, s, label = 'S') e_plot = matplotlib.pyplot.plot(times, e, label = 'E') i_plot = matplotlib.pyplot.plot(times, i, label = 'I') r_plot = matplotlib.pyplot.plot(times, r, label = 'R') matplotlib.pyplot.legend(('S', 'E', 'I', 'R'), loc = 'upper right') axes = matplotlib.pyplot.gca() axes.set_xlabel('Time in days') axes.set_ylabel('Number of persons') matplotlib.pyplot.xlim(xmin = 0.) matplotlib.pyplot.ylim(ymin = 0.)
x(t)=-k*(t), k=const>0
x(h)=x(0)+h(-k*(h))