https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
Category: R
R
the leading tool
many packages
active community
install.packages("swirl") library(swirl) swirl()
> ?mean > x <- c(0:10, 50) > x [1] 0 1 2 3 4 5 6 7 8 9 10 50 > xm <- mean(x) > xm [1] 8.75 > c(xm, mean(x, trim = 0.10)) [1] 8.75 5.50
> subset(statesInfo, state.region == 1) X state.abb state.area state.region population income illiteracy life.exp murder 7 Connecticut CT 5009 1 3100 5348 1.1 72.48 3.1 19 Maine ME 33215 1 1058 3694 0.7 70.39 2.7 21 Massachusetts MA 8257 1 5814 4755 1.1 71.83 3.3 29 New Hampshire NH 9304 1 812 4281 0.7 71.23 3.3 30 New Jersey NJ 7836 1 7333 5237 1.1 70.93 5.2 32 New York NY 49576 1 18076 4903 1.4 70.55 10.9 38 Pennsylvania PA 45333 1 11860 4449 1.0 70.43 6.1 39 Rhode Island RI 1214 1 931 4558 1.3 71.90 2.4 45 Vermont VT 9609 1 472 3907 0.6 71.64 5.5 highSchoolGrad frost area 7 56.0 139 4862 19 54.7 161 30920 21 58.5 103 7826 29 57.6 174 9027 30 52.5 115 7521 32 52.7 82 47831 38 50.2 126 44966 39 46.4 127 1049 45 57.1 168 9267
Title ======================================================== This is an R Markdown document or RMD. Markdown is a simple formatting syntax for authoring web pages (click the **Help** toolbar button for more details on using R Markdown). When you click the **Knit HTML** button a web page will be generated that includes both content as well as the output of any embedded R code chunks within the document.
R
> v <- c(1, 3, 5) > v [1] 1 3 5 > v[2] [1] 3 > v[2] <- 10 > v [1] 1 10 5 > length(v) [1] 2 1] 2 > v <- seq(1, 10) > v [1] 1 2 3 4 5 6 7 8 9 10 > v <- rep(1:5, times=3) > v [1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 > x <- c(1, 3, 5) > y <- c(2, 4, 6) > x*2 [1] 2 6 10 > x + y [1] 3 7 11 > x > y [1] FALSE FALSE FALSE > x %in% y [1] FALSE FALSE FALSE > union(x, y) [1] 1 3 5 2 4 6 > intersect(x, y) numeric(0) > setdiff(x, y) [1] 1 3 5 > setequal(x, y) [1] FALSE > x <- c("S", "M", "L", "M", "L") > x [1] "S" "M" "L" "M" "L" > x.fc <- factor(x) > x.fc [1] S M L M L Levels: L M S > levels(x.fc) [1] "L" "M" "S" > x.or <- ordered(x, levels=c("S","M","L")) > x.or [1] S M L M L Levels: S < M < L > x <- matrix(1:6, nrow=3, ncol=2) > x [,1] [,2] [1,] 1 4 [2,] 2 5 [3,] 3 6 > > x <- matrix(1:6, nrow=3, ncol=2, byrow=TRUE) > x [,1] [,2] [1,] 1 2 [2,] 3 4 [3,] 5 6 > x <- rbind(c(1, 2), 3:4, 5:6) > x [,1] [,2] [1,] 1 2 [2,] 3 4 [3,] 5 6 > x <- cbind(c(1,2),3:4,5:6) > x [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 > x + 1 [,1] [,2] [,3] [1,] 2 4 6 [2,] 3 5 7 > 1/ x [,1] [,2] [,3] [1,] 1.0 0.3333333 0.2000000 [2,] 0.5 0.2500000 0.1666667 > dim(x) [1] 2 3 > nrow(x) [1] 2 > ncol(x) [1] 3 > x [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 > x[, 1] [1] 1 2 > x[2,] [1] 2 4 6 > x[1, 2] [1] 3 > x[1, 1:2] [1] 1 3 > x[1, c(1,2)] [1] 1 3 > x[1, 2] <- 10 > x [,1] [,2] [,3] [1,] 1 10 5 [2,] 2 4 6 > edit(x) col1 col2 col3 [1,] 1 10 5 [2,] 2 4 6 > x2 <- edit(x) > x [,1] [,2] [,3] [1,] 1 10 5 [2,] 2 4 6 > x <- list(5:10, "abc", matrix(1:6, nrow=2, ncol=3)) > x [[1]] [1] 5 6 7 8 9 10 [[2]] [1] "abc" [[3]] [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 > x[1] [[1]] [1] 5 6 7 8 9 10 > x[[1]] [1] 5 6 7 8 9 10 > x[[3]][1, 2] [1] 3 x <- read.table("sales.txt", header=TRUE, sep=",", na.strings="*") sum(x$sales), max(x$sales), mean(x$sales),median(x$sales),sd($sales) mean(x$DISTANCE, na.rm=TRUE), summary(x$sales), summary(x), str(x)