>>> from pandas import Series, DataFrame >>> d = {'one': Series([1,2,3], index=['a','b','c']), ... 'two': Series([1,2,3,4], index=['a','b','c','d'])} >>> df = DataFrame(d) >>> df one two a 1.0 1 b 2.0 2 c 3.0 3 d NaN 4 >>> import numpy >>> df.apply(numpy.mean) one 2.0 two 2.5 dtype: float64 >>> df['one'].map(lambda x: x>= 1) a True b True c True d False Name: one, dtype: bool >>> df.applymap(lambda x: x>= 1) one two a True True b True True c True True d False True
from pandas import DataFrame, Series import numpy def avg_bronze_medal_count(): countries = ['Russian Fed.', 'Norway', 'Canada', 'United States', 'Netherlands', 'Germany', 'Switzerland', 'Belarus', 'Austria', 'France', 'Poland', 'China', 'Korea', 'Sweden', 'Czech Republic', 'Slovenia', 'Japan', 'Finland', 'Great Britain', 'Ukraine', 'Slovakia', 'Italy', 'Latvia', 'Australia', 'Croatia', 'Kazakhstan'] gold = [13, 11, 10, 9, 8, 8, 6, 5, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0] silver = [11, 5, 10, 7, 7, 6, 3, 0, 8, 4, 1, 4, 3, 7, 4, 2, 4, 3, 1, 0, 0, 2, 2, 2, 1, 0] bronze = [9, 10, 5, 12, 9, 5, 2, 1, 5, 7, 1, 2, 2, 6, 2, 4, 3, 1, 2, 1, 0, 6, 2, 1, 0, 1] olympic_medal_counts = {'country_name':Series(countries), 'gold': Series(gold), 'silver': Series(silver), 'bronze': Series(bronze)} olympic_medal_counts_df = DataFrame(olympic_medal_counts) bronze_at_least_one_gold = olympic_medal_counts_df['bronze'][olympic_medal_counts_df['gold'] >= 1] avg_bronze_at_least_one_gold = numpy.mean(bronze_at_least_one_gold) print(avg_bronze_at_least_one_gold)