import urllib import json import base64 BLOCK_SIZE = 128 site = "http://cs387.udacity-extras.appspot.com/beast" def unencode_json(txt): d = json.loads(txt) return dict((str(k), base64.urlsafe_b64decode(str(v))) for k, v in d.iteritems()) def _send(attack=None, token=None): data = {} if attack is not None: data["attack"] = base64.urlsafe_b64encode(attack) if token is not None: data["token"] = base64.urlsafe_b64encode(token) json = urllib.urlopen(site, urllib.urlencode(data)).read() json = unencode_json(json) return json _TOKEN = None def send(attack=None): global _TOKEN json = _send(attack, _TOKEN) _TOKEN = json["token"] return json["message"]
Category: cryptography
Asymmetric Cryptosystems
e = 65537 n = 132177882185373774813945506243321607011510930684897434818595314234725602493934515403833460241072842788085178405842019124354553719616350676051289956113618487539608319422698056216887276531560386229271076862408823338669795520077783060068491144890490733649000321192437210365603856143989888494731654785043992278251 m1 = 387 s1 = 104694095966994423550399840405679271451689287439740118881968798612714798360187905616965324945306116261186514828745033919423253353071142760352995900515279740753864505327750319034602409274084867637277266750899735986681083836544151016817569622466120342654469777762743360212628271549581658814852850038900877029382 m2 = 2 s2 = 18269259493999292542402899855086766469838750310113238685472900147571691729574239379292239589580462883199555239659513821547589498977376834615709314449943085101697266417531578751311966354219681199183298006299399765358783274424349074040973733214578342738572625956971005052398172213596798751992841512724116639637 m3 = 774 s3 = 0 def mod_exp(a, b, q): val = 1 mult = a while b > 0: odd = b & 1 if odd == 1: val = (val * mult) % q b -= 1 if b == 0: break mult = (mult * mult) % q b = b >> 1 return val def verify_signature(e, n, m, s): assert m == mod_exp(s, e, n)
Diffie-Hellman key exchange
import string P = 1267650600228229401496703205223 g = 3 g_a = 142621255265782287951127214876 g_b = 609743693736442153553407144551 n_multiplications = 26 def mod_exp(a, b, q): """return a**b % q""" val = 1 mult = a while b > 0 add = b & 1 if odd == 1: val = (val * mult) % q b -= 1 if b == 0: break mult = (mult * mult) % q b = b >> 1 return val def count_multiplications(exponent): """return the number of multiplications necessary to raise a number to 'exponent'""" bits = convert_to_bits(exponent) return len(bits) + sum(b for b in bits) -2 def encode(plaintext, key): assert len(plaintext) <= len(key) return [m^k for m, k in zip(plaintext, key)] def decode(ciphertext, key): assert len(ciphertext) <= len(key) return [c^k for c, k in zip(ciphertext, key)] valid_chars = set(c for c in string.printable[:62]) valid_chars.add('') def is_valid(decode_guess): return (len(decode_guess) == 14 and all(d in valid_chars for d in decode_guess)) BITS = ('0', '1') ASCII_BITS = 7 def display_bits(b): """converts list of {0, 1}* to string""" return ''.join([BITS[e] for e in b]) def seq_to_bits(seq): return [0 if b == '0' else 1 for b in seq] def pad_bits(bits, pad): """pads seq with leading 0s up to length pad""" assert len(bits) <= pad return [0] * (pad - len(bits)) + bits def convert_to_bits(n): """converts an integer `n` to bit array""" result = [] if n == 0: return [0] while n > 0: result = [(n % 2)] + result n = n / 2 return result def string_to_bits(s): def chr_to_bit(c): return pad_bits(convert_to_bits(ord(c)), ASCII_BITS) return [b for group in map(chr_to_bit, s) for b in group] def bits_to_char(b): assert len(b) == ASCII_BITS value = 0 for e in b: value = (value * 2) + e return chr(value) def list_to_string(p): return ''.join(p) def bits_to_string(b): return ''.join([bits_to_char(b[i:i + ASCII_BITS]) for i in range(0, len(b), ASCII_BITS)])
Rabin Miller Primality Theory
from hw3_4_util import mod_exp from random import randrange def rabin_miller(n, target=128): """returns True if prob(^n' is prime) <= 2**(-'target')""" def calculate_t(n): n = n - 1 t = 0 while n % 2 == 0: n = n / 2 t += 1 return t if n % 2 == 0: return False t = calculate_t(n) s = (n - 1)/(2 ** t) n_tests = target / 2 tried = set() if n_tests > n: raise Exception("n i s too small") for i in range(n_tests): while True: a = randrange(1, n) if a not in tried: break tried.add(a) if mod_exp(a, s, n) == 1: continue found = False for j in range(0, t): if mod_exp(a, 2**j*s, n) == (n - 1): found = True break if not found: return False return True
Primitive Roots
from hw3_t_util import mod_exp def primitive_roots(n): """Returns all the primitive_roots of n""" roots = [] def is_primitive_root(r): s = set() for i in range(1, n): t = mod_exp(r, i, n) if t in s: return False s.add(t) return True for i in range(2, n): if is_primitive_root(i): roots.append(i) return roots def test(): assert primitive_roots(3) == [2] assert primitive_roots(5) == [2, 3] print "test pass"
finding a large prime
def find_prime_near(x):
while True:
if is_prime(x):
return x
x = x + 1
Naive primality test
def is_prime(x):
for i in range(2, x):
if x % i == 0: return False
return True
Faster Primality Testing
probabalistic test
passes the test, p(x is composite) <= 2 -k
Fermat's Little Theorem:
if p is prime, 1 <= a < p => ap-1 = 1 mod p
Hash Collision
from Crypto.Cipher import AES from copy import copy def find_collision(message): new_message = copy(message) return new message def test(): messages = ["Trust, but verify. -a signature phrase of President Ronald Reagan", "The best way to find out if you can trust somebody is to trust them. (Ernest Hemingway)", "If you reveal your secrets to the wind, you should not blame the wind for revealing them to the trees. (Khalil Gibran)", "I am not very good at keeping secrets at all! If you want your secret kept do not tell me! (Miley Cyrus)", "This message is exactly sixty four characters long and no longer"] for m in messages: m = string_to_bits(m) new_message = find_collision(m) if not check(m, new_message): print "Failed to find a collision for '%s'" % m return False return True from Crypto.Cipher import AES BITS = ('0', '1') ASCII_BITS = 8 def display_bits(b): """converts list of {0, 1}* to string""" return ''.join([BITS[e] for e in b]) def seq_to_bits(seq): return [0 if b == '0' else 1 for b in seq] def pad_bits(bits, pad): """pads seq with leading 0s up to length pad""" assert len(bits) <= pad return [0] * (pad - len(bits)) + bits def convert_to_bits(n): """converts an integer `n` to bit array""" result = [] if n == 0: return [0] while n > 0: result = [(n % 2)] + result n = n / 2 return result def string_to_bits(s): def chr_to_bit(c): return pad_bits(convert_to_bits(ord(c)), ASCII_BITS) return [b for group in map(chr_to_bit, s) for b in group] def bits_to_char(b): assert len(b) == ASCII_BITS value = 0 for e in b: value = (value * 2) + e return chr(value) def list_to_string(p): return ''.join(p) def bits_to_string(b): return ''.join([bits_to_char(b[i:i + ASCII_BITS]) for i in range(0, len(b), ASCII_BITS)]) def pad_bits_append(small, size): # as mentioned in lecture, simply padding with # zeros is not a robust way way of padding # as there is no way of knowing the actual length # of the file, but this is good enough # for the purpose of this exercise diff = max(0, size - len(small)) return small + [0] * diff def xor_bits(bits_a, bits_b): """returns a new bit array that is the xor of `bits_a` and `bits_b`""" return [a^b for a, b in zip(bits_a, bits_b)] def bits_inc(bits): """modifies `bits` array in place to increment by one wraps back to zero if `bits` is at its maximum value (each bit is 1) """ # start at the least significant bit and work towards # the most significant bit for i in range(len(bits) - 1, -1, -1): if bits[i] == 0: bits[i] = 1 break else: bits[i] = 0 def aes_encoder(block, key): block = pad_bits_append(block, len(key)) # the pycrypto library expects the key and block in 8 bit ascii # encoded strings so we have to convert from the bit array block = bits_to_string(block) key = bits_to_string(key) ecb = AES.new(key, AES.MODE_ECB) return string_to_bits(ecb.encrypt(block)) def get_block(plaintext, i, block_size): """returns the ith block of `plaintext`""" start = i * block_size if start >= len(plaintext): return None end = min(len(plaintext), (i+1) * block_size) return pad_bits_append(plaintext[start:end], block_size) def get_blocks(plaintext, block_size): """iterates through the blocks of blocksize""" i = 0 while True: start = i * block_size if start >= len(plaintext): break end = (i+1) * block_size i += 1 yield pad_bits_append(plaintext[start:end], block_size) def _counter_mode_inner(plaintext, key, ctr, block_enc): eblock = block_enc(ctr, key) cblock = xor_bits(eblock, plaintext) bits_inc(ctr) return cblock def counter_mode(plaintext, key, ctr, block_size, block_enc): """Return the counter mode encoding of `plaintext""" cipher = [] # break the plaintext into blocks # and encode each one for block in get_blocks(plaintext, block_size): cblock = _counter_mode_inner(block, key, ctr, block_enc) cipher.extend(cblock) return cipher def counter_mode_hash(plaintext): block_size, block_enc, key, ctr = hash_inputs() hash_ = None for block in get_blocks(plaintext, block_size): cblock = _counter_mode_inner(block, key, ctr, block_enc) if hash_ is None: hash_ = cblock else: hash_ = xor_bits(hash_, cblock) return hash_ def hash_inputs(): block_size = 128 block_enc = aes_encoder key = string_to_bits("Vs7mHNk8e39%CXeY") ctr = [0] * block_size return block_size, block_enc, key, ctr def _is_same(bits_a, bits_b): if len(bits_a) != len(bits_b): return False for a, b in zip(bits_a, bits_b): if a != b: return False return True def check(message_a, message_b): """return True if `message_a` and `message_b` are different but hash to the same value""" if _is_same(message_a, message_b): return False hash_a = counter_mode_hash(message_a) hash_b = counter_mode_hash(message_b) return _is_same(hash_a, hash_b)
Cbc Implementation
from Crypto.Cipher import AES def non_encoder(block, key): """A basic encoder that doesn't actually do anything""" return pad_bits_append(block, len(key)) def xor_encoder(block, key): block = pad_bits_append(block, len(block, len(key)) cipher = [b ^ k for b, k in zip(block, key)] return cipher def aes_encoder(block, key): block = pad_bits_append(block, len(key)) block = bit_to_string(block) key = bits_to_string(key) ecb = AES.new(key, AES.MODE_ECB) return string_to_bits(ecb.encrypt(block)) def electronic_cookbook(plaintext, key, block_size, block_enc): """Return the ecb encoding of 'plaintext""" cipher = [] for i in range(len(plaintext)/ block_size + 1): start = i * block_size if start >= len(plaintext): break end = min(len(plaintext), (i+1) * block_size) block = plaintext[start:end] cipher.extend(block_enc(block, key)) return cipher def cipher_block_chaining(plaintext, key, init_vec, block_size, block_enc): """Return the cbc encoding of 'plain text'""" def test(): key = string_to_bit('4h8f.093mJo:*9#$') iv = string_to_bit('89JIlkj3$%0lkjdg') plaintext = string_to_bits("one if by land; two if by sea") BITS = ('0', '1') ASCII_BITS = 8 def display_bits(b): """converts list of {0, 1}* to string""" return ''.join([ITS[e] for e in b]) def seq_to_bits(seq): return [0 if b == '0' else 1 for b in seq] def pad_bits(bits, pad): """pads seq with leading 0s up to length pad""" assert len(bits) <= pad return [0] * (pad - len(bits)) + bits def convert_to_bits(n): """converts an integer 'n' to bit array""" result = [] if n == 0: return [0] while n > 0: result = [(n % 2)] + result n = n / 2 return result def string_to_bits(s): def chr_to_bit(c): return pad_bit(convert_to_bits(ord(c)), ASCII_BITS) return [b for group in map(chr_to_bits, s) for b in group] def bits_to_char(b): assert len(b) == ASCII_BITS value = 0 for e in b: value = (value * 2) + e return chr(value) def list_to_string(p): return ''.join(p) def bits_to_string(b): return ''.join([bits_to_char(b[i:i + ASCII_BITS]) for i in range(0, len(b), ASCII_BITS)]) def pad_bits_append(small, size): diff = max(0, size - len(small)) return small + [0] * diff
Physically Random Events
Quantum Mechanics
Thermal Noise
Key proceed mouse move
Peseudo-Random Number Generator
counter 0, 1, 2 -> Encrypt
Pool of Randomness seed-> key
Storing a file securely
Electronic Codebook Mode
Randomness
def generate_sequence(f, n): return map(f, range(n)) def generate_fake_random(n): repetition = 0 previous = None res = [] for i in range(n): x = random.choice([0, 1]) if x == previous: repetition += 1 if repetition > 2: x = (x + 1) % 2 repetition = 1 previous = x else: previous = x repetition = 1 res.append(x) return res length = 88 print display_bits(generate_sequence(lambda n: 0 if n % 3 == 0 else 1, length))
s i random if K(s) = |s| + c