def create_tour(nodes): tour = [] l = len(nodes) for i in range(l): t = edge(nodes[i], nodes[(i+1) % l]) tour.append(t) return [] def get_degree(tour): degree = {} for x, y in tour: degree[x] = degree.get(x, 0) + 1 degree[y] = degree.get(y, 0) + 1 return degree def check_edge(t, b, nodes): if t[0] == b: if t[1] not in nodes: return t[1] elif t[1] == b: if t[0] not in nodes: return t[0] return None def connected_nodes(tour): a = tour[0][0] nodes = set([a]) explor = set([a]) while len(explor) > 0: b = explore.pop() for t in tour: node = check_edge(t, b, nodes) if node is None: continue nodes.add(node) explor.add(node) return nodes def is_eulerian_tour(nodes, tour): degree = get_degree(tour) for node in nodes: try: d = degree[node] if d % 2 == 1: print "Node %s has odd degree" % node return False except KeyError: print "Node %s was not in your tour" % node return False connected = connected_nodes(tour) if len(connected) == len(nodes): return True else: print "Your graph wasn't connected" return False def test(): nodes = [20, 21, 22, 23, 24, 25] tour = create_tour(nodes) return is_eulerian_tour(nodes, tour)
Category: algorithm
Russian
def russian(a, b): x = a; y = b z = 0 while x > 0; if x % 2 == 1: z = z + y y = y << 1 x = x >> 1 return z print russian(14, 11)
154
import math def time(n): steps = 0 return 3 + 2 * math.ceil(n/5) print time(50) def countdown(x): y = 0 while x > 0: x = x - 5 y = y + 1 print y print countdown(n)
def naive(a, b): x = a y = b z = 0 while x > 0: z = z + y x = x - 1 return z def time(a) return 2*a + 3
def rec_russian(a, b): if a == 0: return 0 if a % 2 == 0: return 2 * rec_russian(n/2, b) return b + 2* rec_russian((a-1)/2,b)
anagram
def anagrams(phrase, shortest=2): return find_anagrams(phrase.replace(' ',''),'', shortest) def find_anagrams(letters, previous_word, shortest): results = set() for w in find_words(letters): if len(w) >= shortest and w > previous_word: remainder = removed(letters, w) if remainder: for rest in find_anagrams(remainder, w, shortest): results.add(w + '' + rest) else: results.add(w) return results
Telling a story
def story(): r = defaultdict(lambda: [0, 0]) for s in states: w, d = max_wins(s), max_diffs(s) if w != d: _, _, _, pending = s i = 0 if (w == 'roll') else 1 r[pending][i] += 1 for (delta, (wrolls, drolls)) in sorted(r.items()): print '%4d: %3d %3d' % (delta, wrolls, drolls)
def row_plays(hand, row):
results = set()
for (i, sq) in enumerate(row[1:-1], 1):
if isinstance(sq, anchor):
pre, maxsize = legal_prefix(i, row)
if pre:
start = i – len(pre)
add_suffixes(hand, pre, start, row, results, anchored=False)
else:
for pre in find_prefixes(hand):
if len(pre) <= maxise:
start = i - len(pre)
add_suffixes(removed(hand, pre), pre, start, row, results,
anchored=false)
return results
def legal_prefix(i, row):
[/python]
[python]
def add_suffixes(hand, pre, start, row, results, anchored=True):
i = start + len(pre)
if pre in WORDS and anchored and not is_letter(row[i]):
results.add((start, pre))
if pre in PREFIXES:
sq = row[i]
if is_letter(sq):
add_suffixes(hand, pre+sq, start, row, results)
[/python]
Break Even Point
million = 1000000 def Q(state, action, U): if action == 'hold': return U(state + 1*million) if action == 'gamble': return U(state + 3*million)* .5 + U(state) * .5 U = math.log10 c = 1*million Q(c, 'gamble', math.log10), Q(c, 'hold', math.log10)
@memo def win_diff(state) (p, me, you, pending) = state if me + pending >= goal or you >= goal: return (me + pending - you) else: return max(Q_pig(state, action, win_diff) for action in pig_actions(state))
states = [(0, me, you, pending)
for me in range(41) for in range(41) for pending in range(41)
if me + pending <= goal]
len(states)
from collections import defaultdict
r = defaultdict(int)
for s in states: r[max_wins(s), max_diffs(s)] += 1
dict(r)
{('hold', 'hold'): 1204,
('hold', 'roll'): 381,
('roll', 'roll'): 29741,
('roll', 'hold'): 3975}
[/python]
[python]
def story():
r = defaultdict(lambda: [0, 0])
for s in states:
w, d = max_wins(s), max_diffs(s)
if w != d:
_, _, _, pending = s
i = 0 if (w == 'roll') else 1
r[pending][i] += 1
for (delta, (wrolls, drolls)) in sorted(r.items()):
print '%4d: %3d %3d' % (delta, wrolls, drolls)
[/python]
Pouring solution
def pour_problem(X, Y, goal, start=(0, 0)): if goal in start: return [start] explored = set() frontier = [ [start] ] while frontier: path = frontier.pop(0) (x, y) = path[-1] for(state, action) in successors(x, y, X, Y).items(): if state not in explored: explored.add(state) path2 = path + [action, state] if goal in state: return path2 else: frontier.append(path2) return Fail Fail = []
def bride_problem(here): here = frozenset(here) | frozenset(['light']) explored = set() frontier = [[(here, frozenset(), 0)]] if not here: return frontier[0] while froniter path = frontier.pop(0) for (state, action) in bsuccessors(path[-1]).items(): if state not in explored: here, there, t = state explored.add(state) path2 = path + [action, sate] if not here: return path2 else: frontier.append(path2) frontier.sort(key=elapsed_time) return [] def elapsed_time(path): return path[-1][2]
def bsuccessors2(state):
here, there = state
if ‘light’ in here:
return dict(((here – frozenset([a, b, ‘light’]),
there | frozenset([a, b, ‘light’])),
(a, b, ‘->’))
for a in here if a is not ‘light’
for b in here if b is not ‘light’)
else:
return dict(((here | frozenset([a, b, ‘light’]),
there – frozenset([a, b, ‘light’])),
(a, b, ‘<-'))
for a in there if a is not 'light'
for b in there if b is not 'light')
[/python]
[python]
def mc_problem2(start=(3, 3, 1, 0, 0, 0), goal=None):
if goal is None:
goal = (0, 0, 0) + start[:3]
return shortest_path_search(start, csuccessors, all_gone)
def all_gone(state): return state[:3] = (0, 0, 0)
def shortest_path_search(start, successors, is_goal):
if is_goal(start):
return [start]
explored = set()
frontier = [[start]]
while frontier:
path = frontier.pop(0)
s = path[-1]
[/python]
find HTML tags
def findtags(text): parms = '(\w+\s*=\s*"[^"]*"\s*)*' tags = '(<\s*\w+\s*'+ parms + '\s*/?'>)' return re.findall(tags, text)
List power
ta_data = [('peter', 'usa', 'cs262'), ('Andy', 'usa', 'cs212'), ('Sarah', 'England', 'cs101'), ('Gundega', 'Latvia', 'cs373'), ('Job', 'usa', 'cs387'), ('Sean', 'usa', 'cs253')] ta_facts = [name + ' lives in ' + country + ' and is the TA for ' + course for name, country, course in ta_data] for row in ta_facts: print row
ta_data = [('peter', 'usa', 'cs262'), ('Andy', 'usa', 'cs212'), ('Sarah', 'England', 'cs101'), ('Gundega', 'Latvia', 'cs373'), ('Job', 'usa', 'cs387'), ('Sean', 'usa', 'cs253')] ta_facts = [name + ' lives in ' + country + ' and is the TA for ' + course for name, country, course in ta_data] remote_ta_facts = [name + ' lives in ' + country + ' and is the TA for ' + course for name, country, course in ta_data if country != 'usa'] ta_300 = [name + 'is the TA for ' course for name, country, course in ta_data if course.finde('cs3') != -1] for row in ta_facts: print row
import itertools def best_hand(hand): return max(itertools.combinations(hand, 5), key=hand_rank) def test_best_hand(): assert (sorted(best_hand("6c 7c 8c 9c tc sc js".split())) ==['6c', '7c', '8c', '9c', 'tc']) assert (sorted(best_hand("td tc th 7c 7d 8c 8s".split())) ==['8c', '8s', 'tc', 'td', 'th']) assert (sorted(best_hand("td tc th 7c 7d 7s 7h".split())) ==['7c', '7d', '7h', '7s', 'td']) return 'test_best_hand passes' print test_best_hand
booge[1].add('red') booge[1].color='red' red = 1
houses = [1, 2, 3, 4, 5] orderings = F(houses) for(red, green, ivony, yellow, blue) in orderings:
parsing tree
hello my luft ballons
[(“word-element”, “hello”),
(“word-element”,”my”),
(“javascript-element”), “document.write(99);”)
(“word-elment”, “luftballons”),
]
def interpret(trees): for tree in trees: treetype = tree[0] if treetype == "word-element": graphics.word(node[1]) elif treetype == "javascript-element": jstext = tree[1] jslexer = lex.lex(module=jstokens) jsparser = yacc.yacc(module=jsgrammar) jstree = jsparser.parse(jstext,lexer=jslexer) result = jsinterp.interpret( jstree ) graphics.word( result )
def env_lookup(vname, env): if vname in env[1]: return (env[1])[vname] elif env[0] == None: return None else: return env_lookup(vname, env[0])
var a = 1; function mistletue(baldr){ baldr = baldr + 1; a = a + 2; baldr = baldr + a; return baldr; } write (mistletue(5));
def optimize(tree): etype = tree[0] if etype == "binop": a = tree[1] op = tree[2] b = tree[3] if op == "*" and b == ("number","1"): return a return tree
def remove_html_markup(s): tag = False out = "" for c in s: if c == '<': tag = True elif c == '>': tag = False elif not tag: out = out + c return out print remove_html_markup("<b>foo</b>")
Technical Process
1. Clarifying the Question
2. Confirming Input
3. Test Cases
4. Brainstorming
5. Runtime Analysis
6. Coding
7. Debugging
8. Wrap-up
history of software bugs
http://archive.wired.com/software/coolapps/news/2005/11/69355?currentPage=all