def vertex_cover_tree(input_graph): n = len(input_graph) assignment = [None]*n return recursive_vertex_cover(input_graph, assignment) def recursive_vertex_cover(input_graph, assignment): n = len(input_graph) v = -1 for i in range(n): if assignment[i] == None: v = i for j in range(i, n): if input_graph[i][j] == 1: if assignment[i] == 0 and assignment[j] == 0: return float("inf") if v == -1: size = 0 for i in range(n): if assignment[i] == 1: size += 1 return size assignment[v] = 0 size_v_0 = recursive_vertext_cover
Category: algorithm
4color
from fourcolor import graph_is_4colorable def graph_is_3colorbale(g): h = [] for node in g: nn = node + [1] h.append(nn) h.append([1] * (len(g) + 1)) return graph_is_4colorable(h)
Shortest toure
best_tour_length = infinity for each possible ordering of the houses tour_length = 0 for i in range[1,n-1] tour_length = tour_length + distance(house[i], house[i+1]) tour_length = toure_length + distance(house[n], house[1]) best_tour_length = min(best_tour_length, tour_length)
satisfied
def is_satisfied(num_variables, clauses, assignment): for clause in clauses: caluse_satisfied = False for variable in clause: if variable > 0: if assignment[variable] == True: clause_satisfied = True break else: if assignment[-variable] == False: clause_satisfied = True break if clause_satisfied == False: return False return True
Naivete Implemented
from itertools import * def validity_check(cover, graph): assert len(graph) == len(cover) n = len(graph) for i in range(0, n): for j in range(i+1, n): if graph[i][j]==1 and cover[i]!=1 and cover[j]!=1: return False return True def vertex_cover_naive(input_graph): n = len(input_graph) minimum_vertex_cover = n for assignment in product([0, 1], repeat=n): if(validity_check(assignment, input_graph, n)): size = sum(assignment) if minimum_vertex_cover > size: minimum_vertex_cover = size return minimum_vertex_cover def test(): graph = [[0, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 0, 0, 1, 1], [1, 0, 1, 0, 0], [1, 1, 1, 1, 0]] asseret vertex_cover_naive(graph) == 3
For each vertex v in G: if_better: assign "1" to v else: assign "0" to v if assignment is valid: if size of assignment is at most k: return "Yest" return "No"
sharpG gnitrevnl
def inverse_graph(graph): n = len(graph) inverted_graph=[] for i in range(0, n): inverted_graph.append([]) for j in range(0, n): if (i != j): inverted_graph[i].append(1-graph[i][j]) else: inverted_graph[i].append(0) return inverted_graph def test(): g1 = [[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]] assert inverse_graph(g1) == [[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]] g2 = [[0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]] assert inverse_graph(g2) == [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
challenging problems
what to do about them
-> Theoretical Computer Science
・Recognize
・Understand
・Navigate
minimum_devices = number of communication centers for each assignment of (0,1) to the communication centers: if assignment is valid number_of_devices = number of "l"s in assignment minimum_devices = min(minimum_devices,number_of_devices)
largest_group = 0 for each assignment of (0, 1) to the genes: if assignment is valid: group_size = number of "1"s in assignment largest_group = max(largest_group, group size)
Implementing
def shortest_dist_node(dist): best_node = 'undefined' best_value = 1000000 for v in dist: if dist[v] < best_value: (best_node, best_value) = (v, dist[v]) return best_node def dijkstra(G,v): dist_so_far = {} dist_so_far[v] = 0 final_dist = {} while len(final_dist) < len(G): w = shortest_dist_node(dist_so_far) final_dist[w] = dist_so_far[w] del dist_so_far[w] for x in G[w]: if x not in dist_so_far: dist_so_far[x] = final_dist[w] + G[w][x] elif final_dist[w] + G[w][x] < dist_so_far[x]: dist_so_far[x] = fianl_dist[w] + G[w][x] return fianl_dist def make_link(G, node1, node2, w): if node1 not in G: G[node1] = {} if node2 not in G[node1]: (G[node1])[node2] = 0 (G[node1])[node2] += w if node2 not in G: G[node2] = {} if node1 not in G[node2]: (G[node2])[node1] = 0 (G[node2])[node1] += w return G
mean
L = [2, 3, 2, 3, 2, 4] def mean(L): total = 0 for i in range(len(L)): total += L[i] return (0.0+total)/len(L) print mean(L)
define max value on the list
def max(L): max_so_far = L[0] for i in range(len(L)): if L[i] > max_so_far: max_so_far = L[i] return max_so_far def max(L)
search most popular name in US in 1995
f = open("yob1995.txt", "r") maxname = "none" maxval = 0 max2name = "none" max2val = 0 for line in f: (name, sex, count) = line.rsplit(",") count = int(count) if sex == "F": if count > maxval: max2name = maxname max2val = maxval maxval = count maxname = name elif count > max2val: max2name = name max2val = count print maxname, max2name print maxval, max2val
L = [31, 45, 91, 51, 66, 82, 28, 33, 11, 89, 84, 27, 36] def partition(L, v): smaller = [] bigger = [] for val in L: if val < v: smaller += [val] if val > v: bigger += [val] return smaller + [v] + bigger print partition(L,84)
L = [31, 45, 91, 51, 66, 82, 28, 33, 11, 89, 84, 27, 36] def partition(L, v): smaller = [] bigger = [] for val in L: if val < v: smaller += [val] if val > v: bigger += [val] return (smaller + [v] + bigger) def top_k(L, k): v = L[random.randrange(len(L))] (left,middle,right) = partition(L, y) if len(left) == k: return left if len(left)+1 == k: return left+[v] if len(left) > k: return top_k(left,k) return left+[v]+top_k(right,k-len(left)-1) print top_k(L,5)
time1 = time.time() charG = {} for char1 in characters: for book in marvelG[char1]: make_link(charG, char1, char2) time2 = time.time() print "time to compute strengths: ", time2-time1 time1 = time.time() k = 10 heap = [] for char1 in charaters: for char2 in charG[char1]: if characters[char1] < characters[char2]: if len(heap) < k: insert_heap(heap, (charG[char1][char2],(char1, char2))) elif charG[char1][char2] > val(heap[0]):
magic trick
speed, weight lifespan brain animals = [("dog", 46, 35, 13, 280), ("elephant", 30, 3500, 50, 6250), ("frog", 5, 0.5, 8, 3), ("hippopotamus", 45, 1600, 45, 573), ("horse", 40, 385, 30, 642), ("human", 27, 80, 78, 2000), ("lion", 50, 250, 30, 454), ("mouse", 8, 0.025, 2, 0.625), ("rabbit", 25, 4, 12, 40), ("shark", 26, 230, 20, 92), ("sparrow", 16, 0.024, 7, 2)] def importance_rank(items, weight): names = [item[0] for item in items] scores = [sum([a*b for (a,b) in zip(item[1:], weights)]) for item in items] results = zip(scores,names) res2 = sorted(results) return res2 answer = importance_rank(animals, (2,3,7,1)) for i in range(len(answer)): print i, answer[i][1], "(", answer[i][0], ")"