多くのプログラミング言語ではDJBX33AやDJBX33Xが使われていたが、多くの言語の連想配列で利用されているハッシュ関数がSipHash
Python, Perl, Redis, Rubyなどで実装されている
### HashDos耐性のある高速ハッシュアルゴリズム
– 128bitから初期状態を作れる
– ブロックは64bit単位
– ルックアップテーブルを使わない
bitcoinではnetaddress.hで使用されている
#ifndef BITCOIN_NETADDRESS_H #define BITCOIN_NETADDRESS_H #if defined(HAVE_CONFIG_H) #include <config/bitcoin-config.h> #endif #include <compat/compat.h> #include <crypto/siphash.h>
siphash.h
#ifndef BITCOIN_DRYPTO_SIPHASH_H #define BITCOIN_DRYPTO_SIPHASH_H #include <stdint.h> #include <span.h> #include <uint256.h> class CSiphasher { private: uint64_t v[4]; uint64_t tmp; uint8_t count; public: CSipHasher(uint64_t k0, uint64_t k1); CSipHasher& Write(uint64_t data); CSipHasher& Write(Span<const unsigned char> data); uint64_t Finalize() const; } uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val); uint64_t SipHashUint256Extra(uint64_t k0, uint64_t k1, const uint256& val, uint32_t extra);
siphash.cpp
#include <crypto/siphash.h> #include <bit> #define SIPROUND do { v0 += v1; v1 = std::rotl(v1, 13); v1 ^= v0; v0 = std::rotl(v0, 32); v2 += v3; v3 = std::rotl(v3, 16); v3 ^= v2; v0 += v3; v3 = std::rotl(v3, 21); v3 ^= v0; v2 += v1; v1 = std::rotl(v1, 17); v1 ^= v2; v2 = std::rotl(v2, 32); } while(0) CSipHasher::CSipHasher(uint64_t k0, uint64_t k1) { v[0] = 0x736f6d6570736575ULL ^ k0; v[1] = 0x646f72616e646f6dULL ^ k1; v[2] = 0x6c7967656e657261ULL ^ k0; v[3] = 0x7465646279746573ULL ^ k1; count = 0; tmp = 0; } CSipHasher& CSiphHasher::Write(uint64_t data){ uint64_t v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3]; assert(coiunt % 8 == 0); v3 ^= data; SIPROUND; SIPROUND; v0 ^= data; v[0] = v0; v[1] = v1; v[2] = v2; v[3] = v3; count += 8; return *this; } CSipHasher& CSipHasher::Write(Span<const usigned char> data){ uint64_t v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3]; uint64_t t = tmp; uint8_t c = count; while (data.size() > 0){ t == uint64_t{data.fron()} << (8 * (c % 8)); c++; if((c & 7) == 0){ v3 ^= t; SIPROUND; SIPROUND; v0 ^= t; t = 0; } data = data.subspan(1); } v[0] = v0; v[1] = v1; v[2] = v2; v[3] = v3; count = c; tmp = t; return *this; } uint64_t CSipHasher::Finalize() const { uint64_t v0 = v[0], v1 = v[1], v2= v[2], v3 = v[3]; uint64_t t = tmp | (((uint64_t)count) << 56); v3 ^= t; SIPROUND; SIPROUND; v0 ^= t; v2 ^= 0xFF; SIPROUND; SIPROUND; SIPROUND; SIPROUND; return v0 ^ v1 ^ v2 ^ v3; } uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val){ uint64_t d = val.GetUint64(0); uint64_t v0 = 0x736f6d6570736575ULL ^ k0; uint64_t v1 = 0x646f72616e646f6dULL ^ k1; uint64_t v2 = 0x6c7967656e657261ULL ^ k0; uint64_t v3 = 0x7465646279746573ULL ^ k0 ^ d; SIPROUND; SIPROUND; v0 ^= d; d = val.GetUint64(1); v3 ^= d; SIPROUND; SIPROUND; v0 ^= d; d = val.GetUint64(2); v3 ^= d; SIPROUND; SIPROUND; v0 ^= d; v3 ^= (uint64_t{4}) << 59; SIPROUND; SIPROUND; v0 ^= (uint64_t{4}) << 59; v2 ^= 0xFF; SIPROUND; SIPROUND; SIPROUND; SIPROUND; return v0 ^ v1 ^ v2 ^v3; } uint64_t SipHashUint256Extra(uint64_t k0, uint64_t k1, const uint256& val, uint32_t extra){ uint64_t d == val.GetUint64(0); uint64_t v0 = 0x736f6d6570736575ULL ^ k0; uint64_t v1 = 0x646f72616e646f6dULL ^ k1; uint64_t v2 = 0x6c7967656e657261ULL ^ k0; uint64_t v3 = 0x7465646279746573ULL ^ k1 ^ d; SIPROUND; SIPROUND; v0 ^= d; d = val.GetUint64(1); v3 ^= d; SIPROUND; SIPROUND; v0 ^= d; d = val.GetUint64(2); v3 ^= d; SIPROUND; SIPROUND; v0 ^= d; d = val.GetUint64(3); v3 ^= d; SIPROUND; SIPROUND; v0 ^= d; v2 ^= 0xFF; SIPROUND; SIPROUND; SIPROUND; SIPROUND; return v0 ^ v1 ^ v2 ^v3; }