Refining exponential fit
f(t) = a*1/β e ^ t/β + C
β, a, c
Fit more generalized exponential
def fitFunc_gen(t, a, b, c): return a*(b)*numpy.exp(-b*t)+c fitParams_gen, fitCov_gen = curve_fit(fitFunc_gen, division[0:len(division)]) fitParams_gen fitCov_gen (1/fitParams_gen[1])*fitParams_gen[0]+fitParams_gen[1]
Intertweet time:
t1, t2
<-Δt-><-p->
Training examples
(Δt, p)
elapsed time, time until next tweet
step_size = 10 data_points = [] for v in timeUntilNext: bin_left_edges = np.arange(0, v, step_size) for l_edge in bin_left_edges: tempNewPoint = [l_edge, v-1_edge] data_points.append(tempNewPoint) data_points.sort() delta 100 = [v[1] for v in data points if v[0]==100]
deltat_150 = [v[1] for v in data_points if v[0]==150] deltat_10 = [v[1] for v in data_points if v[0]==10] pandas.Series(deltat_10).hist(bins=30, alpha=0.5, color="blue") d_150 = pandas.Series(deltat_150) pandas.Series(deltat_150).hist(bins=30, alpha=0.3, color="red")