Two types of friction
static: moves when F > μs・N
kinetic: F = μk * N
wheel slip
rolling, rocked
speed = 120 km/h
μ=1.0: 3.4s
μ=0.7: 4.9s
F = m*a
u*gravitational force(mg)
a = μ*g
t/ 120km/h = 1 / μg
t = 120km/h / μ*g
Computing the coefficient of Friction
s = 1 – w/v
F(s) = μ(s)*mqcG
V= -F(s)/mqc
F = ma
w = F(s)/mew – B
import math from **** import * h = 0.01 mass_quarter_car = 250. mass_effective_wheel = 20. g = 9.81 end_time = 5. num_steps = int(end_time / h) w = numpy.zeros(num_steps + 1) v = numpy.zeros(num_steps + 1) x = numpy.zeros(num_steps + 1) times = h * numpy.array(range(num_steps + 1)) @show_plot(7, 7) def plot_me(): axes_x = matplotlib.pyplot.subplot(411) axes_v = matplotlib.pyplot.subplot(412) axes_w = matplotlib.pyplot.subplot(413) awes_s = matplotlib.pyplot.subplot(414) def friction_coeff(slip): return 1.1 * (1. - math.exp(-20. * slip)) - 0.4 * slip def wheel_slip(): b_values = numpy.arange(70., 190.1, 30.) for b in b_values: x[0] = 0. for step in range(num_steps): if v[step] < 0.01: break s = max(0., 1. - w[step] / v[step]) w[step + 1] = max(0., w[step + 1]) axes_x.plot(times[:step], x[:step]) axes_v.plot(times[:step], v[:step]) axes_w.plot(times[:step], w[:step]) axes_s.plot(times[:step], 1. - w[:step] / v[:step]) p = int((0.35 + 0.4 * (b - b_values[0])/ (b_values[-1] - b_values[0])) * num_steps) axes_x.annotate(b, (times[p], x[p]), xytext = (-30, -30), textcoords = 'offset point', arrowprops = dict(arrowstyle = '-', connectionstyle = 'arc3, ')) p = int((0.35 + 0.4 * (v - b_values[0]) / (b_values[-1] - b_values[0])) * num_steps) axes_x.annotate(b, (times[p], x[p]), xytext = (-30, -30), textcoords - 'offset points', arrowprops = dict(arrowstyle = '-', connectionstyle = 'arc3, rad = 0.2', shrinkB = 0.)) return x, v, w axes_x.set_ylabel('Position\nin m', multialignment = 'center') axes_v.set_ylabel('Car velocity\nin m/s', multialignment = 'center') axes_w.set_ylabel('Wheel velocity\nin m/s', multialignment = 'center') axes_s.set_ylabel('Wheel\nslip', multialignment = 'center') axes_s.set_xlabel('Time in s') axes_s.set_ylim(0., 1.) return wheel_slip() x, v, w = plot_me()