機械学習モデル

機械学習モデルを理解することがまず第一

ロジスティック回帰
– 線形回帰式をシグモイド関数にかけて確率値と解釈
ニューラルネットワーク
– ロジスティック回帰の仕組みに隠れ層ノードを追加
サポートベクターマシン
– 2クラスの標本値と境界線の距離を基準に最適化
単純ベイズ
– ベイズの公式を用いて観測値から確率を更新
決定木
– 特定の項目の閾値を基準に分類
ランダムフォレスト
– 複数の決定木の多数決で分類を実施

ロジスティック回帰、ニューラルネットワーク、ディープラーニングは、
予測モデルの構造は事前に決まっていて、パラメータ値にだけ自由度
モデルの構造
(1)個々の入力値にパラメーター値をかける
(2)かけた結果の和をとる
(3)結果にある関数を作用させ、その関数の出力を最終的な予測値(yp)とする

パラメータ値の最適化が学習
モデルが正解値をどの程度正しく予想できるかを評価するための損失関数を定める

つまり、ディープラーニングは線形回帰モデルの発展型といっても過言ではない。
最初に「線形回帰モデル」を学び、そこから、分類モデルのロジスティック回帰、ニューラルネットワーク、ディープラーニングを理解するのが良い。なるほど。