画像認識はこちらになりますね。
Classification : Identifying to which category an object belongs to.
SVM, nearest neighbors, random forest, …
Spam detection, Image recognition.
株価の予測はこちらでしょうか。
Regression:Predicting a continuous-valued attribute associated with an object.
SVR, ridge regression, Lasso, …
Drug response, Stock prices.
属性の分類はこちらです。Web解析でデモグラフィックをグルーピングするにはこちらでしょうね。
Clustering:Automatic grouping of similar objects into sets.
k-Means, spectral clustering, mean-shift, …
Customer segmentation, Grouping experiment outcomes
これは、よくわかりません。変数を減らしていく、ビジュアリゼーションと記載がありますね。。
Dimensionality reduction:Reducing the number of random variables to consider.
Algorithms: PCA, feature selection, non-negative matrix factorization.
Visualization, Increased efficiency
これもあまり馴染みがないですね。モデリングの調整ということは理解ができますが。
Model selection:Comparing, validating and choosing parameters and models.
grid search, cross validation, metrics.
Improved accuracy via parameter tuning
テキストを機械学習に組み込むと書いてますね。どういうことでしょうか。翻訳の精度を上げるとかでしょうか。これは、形態素解析と組み合わせるのでしょうか。面白そうな分野ではありますね。
Preprocessing:Feature extraction and normalization.
preprocessing, feature extraction.
Transforming input data such as text for use with machine learning algorithms.
ということで、Classification、 Regression、Clusteringは割と一般的なモデリングだと思います。
初期は辛いですね。
とにかく量をこなさないと、どうやって学習していったらいいかすらわかりません。