[JavaScript]aタグでテキストエリアの内容をコピー

Output(翻訳結果)をボタン一つでコピーしたい。
L aタグでjsの関数を実行させる
  L getElementsByTagName(“textarea”)[0]でtextareaのtextを取得し、*.select でコピーします。

<div class="card-footer ">
                {!! Form::label('dest', '英語(翻訳結果)') !!}
                {!! Form::textarea('dest', $output, ['class' => 'form-control' ]) !!}
                <a href="javascript:OnLinkClick();">コピー</a>
              </div>

<script>
function OnLinkClick(){
    var text = document.getElementsByTagName("textarea")[1];
    text.select();
}
</script>

おおおおおおおおおおおおお
ええやんか

[SnowNLP] Python3で中国語の自然言語処理

$ pip3 install snownlp

tokenization

from snownlp import SnowNLP

s = SnowNLP(u'今天是周六。')
print(s.words)

$ python3 snow.py
[‘今天’, ‘是’, ‘周六’, ‘。’]

speech tagにするとnoun, adverb, verb, adjectiveなどを表現できます。

print(list(s.tags))

$ python3 snow.py
[(‘今天’, ‘t’), (‘是’, ‘v’), (‘周六’, ‘t’), (‘。’, ‘w’)]

pinyin

print(s.pinyin)

$ python3 snow.py
[‘jin’, ‘tian’, ‘shi’, ‘zhou’, ‘liu’, ‘。’]

sentences

s = SnowNLP(u'在茂密的大森林里,一只饥饿的老虎逮住了一只狐狸。老虎张开大嘴就要把狐狸吃掉。"慢着"!狐狸虽然很害怕但还是装出一副很神气的样子说,"你知道我是谁吗?我可是玉皇大帝派来管理百兽的兽王,你要是吃了我,玉皇大帝是决不会放过你的"。')
print(s.sentences)

[‘在茂密的大森林里’, ‘一只饥饿的老虎逮住了一只狐狸’, ‘老虎张开大嘴就要把狐狸吃掉’, ‘”慢着”‘, ‘狐狸虽然很害怕但还是装出一副很神气的样子说’, ‘”你知道我是谁吗’, ‘我可是玉皇大帝派来管理百兽的兽王’, ‘你要是吃了我’, ‘玉皇大帝是决不会放过你的”‘]

keyword

print(s.keywords(5))

$ python3 snow.py
[‘狐狸’, ‘大’, ‘老虎’, ‘大帝’, ‘皇’]

summary

print(s.summary(3))

[‘老虎张开大嘴就要把狐狸吃掉’, ‘我可是玉皇大帝派来管理百兽的兽王’, ‘玉皇大帝是决不会放过你的”‘]

sentiment analysis

text = SnowNLP(u'这个产品很好用,这个产品不好用,这个产品是垃圾,这个也太贵了吧,超级垃圾,是个垃圾中的垃圾')
sent = text.sentences
for sen in sent:
	s = SnowNLP(sen)
	print(s.sentiments)

$ python3 snow.py
0.7853504415636449
0.5098208142944668
0.13082804652201174
0.5
0.0954842128485538
0.04125325276132508

0から1の値を取り、1に近づくほどポジティブ、0に近いほどネガティブとなります。

[NLTK] customize sentiment analysis

unwanted = nltk.corpus.stopwords.words("english")
unwanted.extend([w.lower() for w in nltk.corpus.names.words()])

def skip_unwanted(pos_tuple):
	word, tag = pos_tuple
	if not word.isalpha() or word in unwanted:
		return False
	if tag.startswith("NN"):
		return False
	return True

positive_words = [word for word, tag in filter(
	skip_unwanted,
	nltk.pos_tag(nltk.corpus.movie_reviews.words(categories=["pos"]))
)]
negative_words = [word for word, tag in filter(
	skip_unwanted,
	nltk.pos_tag(nltk.corpus.movie_reviews.words(categories=["neg"]))
)]

positive_fd = nltk.FreqDist(positive_words)
negative_fd = nltk.FreqDist(negative_words)

common_set = set(positive_fd).intersection(negative_fd)

for word in common_set:
	del positive_fd[word]
	del negative_fd[word]

top_100_positive = {word for word, count in positive_fd.most_common(100)}
top_100_negative = {word for word, count in negative_fd.most_common(100)}

unwanted = nltk.corpus.stopwords.words("english")
unwanted.extend([w.lower() for w in nltk.corpus.names.words()])

positive_bigram_finder = nltk.collocations.BigramCollocationFinder.from_words([
	w for w in nltk.corpus.movie_reviews.words(categories=["pos"])
	if w.isalpha() and w not in unwanted
])

negative_bigram_finder = nltk.collocations.BigramCollocationFinder.from_words([
	w for w in nltk.corpus.movie_reviews.words(categories=["neg"])
	

[NLTK] sentiment analysis

NLTK has a built-in pretrained sentiment analyzer, VADER(Valence Aware Dictionary and sEntiment Reasoner)

import nltk
from pprint import pprint
from nltk.sentiment import SentimentIntensityAnalyzer

sia = SentimentIntensityAnalyzer()
pprint(sia.polarity_scores("Wow, NLTK is really powerful!"))

$ python3 app.py
{‘compound’: 0.8012, ‘neg’: 0.0, ‘neu’: 0.295, ‘pos’: 0.705}

compoundはaverageで-1から1までを示す

twitter corpus

tweets = [t.replace("://", "//") for t in nltk.corpus.twitter_samples.strings()]

def is_positive(tweet: str) -> bool:
    """True if tweet has positive compound sentiment, False otherwise."""
    return sia.polarity_scores(tweet)["compound"] > 0

shuffle(tweets)
for tweet in tweets[:10]:
    print(">", is_positive(tweet), tweet)

$ python3 app.py
> False Most Tory voters not concerned which benefits Tories will cut. Benefits don’t figure in the lives if most Tory voters. #Labour #NHS #carers
> False .@uberuk you cancelled my ice cream uber order. Everyone else in the office got it but me. 🙁
> False oh no i’m too early 🙁
> False I don’t know what I’m doing for #BlockJam at all since my schedule’s just whacked right now 🙁
> False What should i do .

BAD VS PARTY AGAIN :(((((((
> True @Shadypenguinn take care! 🙂
> True Thanks to amazing 4000 Followers on Instagram
If you´re not among them yet,
feel free to connect :-)… http//t.co/ILy03AtJ83
> False RT @mac123_m: Ed Miliband has spelt it out again. No deals with the SNP.
There’s a choice:
Vote SNP get Tories
Vote LAB and get LAB http//…
> True @gus33000 but Disk Management is same since NT4 iirc 😀
Also, what UX refinements were in zdps?
> False RT @KevinJPringle: One of many bizarre things about @Ed_Miliband’s anti-SNP stance is he doesn’t reject deal with LibDems, who imposed aust…

postivie_review_ids = nltk.corpus.movie_reviews.fileids(categories=["pos"])
negative_review_ids = nltk.corpus.movie_reviews.fileids(categories=["neg"])
all_review_ids = positive_review_ids + negative_review_ids

def is_positive(review_id: str) -> bool:
	"""True if the average of all sentence compound scores is positive. """
	text = nltk.corpus.movie_reviews.raw(review_id)
	scores = [
		sia.polarity_scores(sentence)["compound"]
		for sentence in nltk.sent_tokenize(text)
	]
	return mean(scores) > 0

shuffle(all_review_ids)
correct = 0
for review_id in all_review_ids:
	if is_positive(review_id):
		if review in positive_review_ids:
			correct += 1
	else:
		if review in negative_review_ids:
			correct += 1

print(F"{correct / len(all_review_ids):.2%} correct")

既にcorpusがあるのは良いですね。

[NLTK] Word frequency

$ pip3 install nltk

### download
NLTK can be download resouces
– names, stopwords, state_union, twitter_samples, moview_review, averaged_perceptron_tagger, vader_lexicon, punkt

import nltk

nltk.download([
	"names",
	"stopwords",
	"state_union",
	"twitter_samples",
	"movie_reviews",
	"averaged_perceptron_tagger",
	"vader_lexicon",
	"punkt",
])

State of union corpus

words = [w for w in nltk.corpus.state_union.words() if w.isalpha()]

to use stop words

words = [w for w in nltk.corpus.state_union.words() if w.isalpha()]
stopwords = nltk.corpus.stopwords.words("english")
words = [w for w in words if w.lower() not in stopwords]

word_tokenize()

text = """
For some quick analysis, creating a corpus could be overkill.
If all you need is a word list,
there are simpler ways to achieve that goal.
"""
pprint(nltk.word_tokenize(text), width=79, compact=True)

most common

fd = nltk.FreqDist(words)
pprint(fd.most_common(3))

$ python3 app.py
[(‘must’, 1568), (‘people’, 1291), (‘world’, 1128)]

specific word

fd = nltk.FreqDist(words)
pprint(fd["America"])

$ python3 app.py
1076

### concordance
どこに出現するかを示す

text = nltk.Text(nltk.corpus.state_union.words())
text.concordance("america", lines=5)

$ python3 app.py
Displaying 5 of 1079 matches:
would want us to do . That is what America will do . So much blood has already
ay , the entire world is looking to America for enlightened leadership to peace
beyond any shadow of a doubt , that America will continue the fight for freedom
to make complete victory certain , America will never become a party to any pl
nly in law and in justice . Here in America , we have labored long and hard to

text = nltk.Text(nltk.corpus.state_union.words())
concordance_list = text.concordance_list("america", lines=2)
for entry in concordance_list:
	print(entry.line)

$ python3 app.py
would want us to do . That is what America will do . So much blood has already
ay , the entire world is looking to America for enlightened leadership to peace

other frequency distribution

words: list[str] = nltk.word_tokenize(
"""Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.""")
text = nltk.Text(words)
fd = text.vocab()
fd.tabulate(3)

collocation

words = [w for w in nltk.corpus.state_union.words() if w.isalpha()]
finder = nltk.collocations.TrigramCollocationFinder.from_words(words)

pprint(finder.ngram_fd.most_common(2))
pprint(finder.ngram_fd.tabulate(2))

$ python3 app.py
[((‘the’, ‘United’, ‘States’), 294), ((‘the’, ‘American’, ‘people’), 185)]
(‘the’, ‘United’, ‘States’) (‘the’, ‘American’, ‘people’)
294 185

nltkが強力なのはわかった。

別ウィンドウでブラウザを開閉するaタグ・JSの書き方

アプリケーションで一部の機能を別ウィンドウで表示させ、ウィンドウを閉じるリンクも設置させたい時

### 別ウィンドウのリンク
– aタグに直接window.openとして書きます。ここではwidth500 height400のウィンドウです。

<a href="./translate.html" onclick="window.open('./translate.html', '', 'width=500,height=400'); return false;">翻訳</a>

### ウィンドウを閉じる
– window.closeで閉じます。

<a class="nav-link btn-magnify" href="" id="close">ブラウザを閉じる</a>

// 省略

<script>
    let close = document.getElementById('close');
    close.addEventListener('click', ()=>{
      window.close();
    });
  </script>

中々良い感じです。

bootstrapでtable trの背景色を変える

table-secondary など、classにtable-*を入れる

<table class="table">
                  <tr>
                    <th>問合せ日時</th><th>会社名</th><th>氏名</th><th>カテゴリ</th><th>問合せ内容</th><th>詳細</th>
                  </tr>
                  @if($quotes)
                    @foreach ($quotes as $quote)
                      <tr class="{{ $quote->status == 1 ? 'table-secondary' : ''}}">
                        <td>{{ \Carbon\Carbon::parse($quote->created_at)->isoFormat("YYYY年MM月DD日(ddd) H:m") }}</td> // 省略
                      </tr>
                    @endforeach
                  @endif
                </table>

before

after

class=”” 自体を三項方程式で切り分けたいが上手くいかないのでclassの中身だけを条件分岐としています。
しかし、bootstrap万能です。