教師あり学習: 正解ラベルの付いたデータセット
教師なし学習: 正解ラベルの付いていないデータセット
-> 人間の解釈が必要な場合が多い
import numpy as np import matplotlib.pyplot as plt %matplotlib inline from sklearn import datasets iris = datasets.load_iris() print(iris.DESCR)
import numpy as np import numpy.random as random import scipy as sp import pandas as pd from pandas import Series, DataFrame from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df["target"] = iris.target_names[iris.target] df.head() X = df.drop('target', axis=1) Y = df['target'] X_train, X_test, y_train, y_test = train_test_split(X,Y,random_state=0) # K-NN from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=3) model.fit(X_train, y_train) print("train score:",model.score(X_train,y_train)) print("test score:",model.score(X_test,y_test)) # decision tree from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier(max_depth=3) model.fit(X_train, y_train) print("train score:",model.score(X_train,y_train)) print("test score:",model.score(X_test,y_test)) # SVM from sklearn.svm import LinearSVC model = LinearSVC() model.fit(X_train, y_train) print("train score:",model.score(X_train,y_train)) print("test score:",model.score(X_test,y_test)) # Linear Regression from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train) print("train score:",model.score(X_train,y_train)) print("test score:",model.score(X_test,y_test))