import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, ), (0.5,)) ]) trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False) class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() self.conv1 = nn.Conv2d(1, 16, 3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.fc1 = nn.Linear(32 * 7 * 7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 32 * 7 * 7) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x model = SimpleCNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(2): running_loss = 0.0 for images, labels in trainloader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.4f}') # Evaluate the model correct, total = 0, 0 with torch.no_grad(): for images, labels in testloader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f'Accuracy of the model on the test images: {100 * correct / total:.2f}%')
$ python3 cnn.py
100%|██████████████████████████████████████████████████████████████████████████████| 9.91M/9.91M [00:04<00:00, 2.06MB/s]
100%|███████████████████████████████████████████████████████████████████████████████| 28.9k/28.9k [00:00<00:00, 136kB/s]
100%|██████████████████████████████████████████████████████████████████████████████| 1.65M/1.65M [00:01<00:00, 1.20MB/s]
100%|██████████████████████████████████████████████████████████████████████████████| 4.54k/4.54k [00:00<00:00, 1.05MB/s]
Epoch 1, Loss: 0.1991
Epoch 2, Loss: 0.0537
Accuracy of the model on the test images: 98.68%